IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v84y2010i3d10.1007_s11192-010-0211-y.html
   My bibliography  Save this article

Network structure of innovation: can brokerage or closure predict patent quality?

Author

Listed:
  • Jyun-Cheng Wang

    (National Tsing Hua University)

  • Cheng-hsin Chiang

    (National Tsing Hua University)

  • Shu-Wei Lin

    (I-PAT)

Abstract

Patents are important intellectual assets for companies to defend or to claim their technological rights. To control R&D cost, companies should carefully examine their patents by patent quality. Approaches to evaluating patent quality are mostly a posteriori uses of factual information of patent quality. This paper examined whether patent quality can be predicted a priori, i.e., during the early years after a patent is granted, by analyzing information embedded in a network of patent citations. Social network analysis was applied to analyze two network positions occupied by a patent, brokerage and closure to determine whether either position is a good predictor of patent quality. Patent renewal decisions and forward citations were adopted as surrogates of patent quality. The analytical results showed that forward citations can be positively predicted by the brokerage position and negatively predicted by the closure position in the early and mature stages. Renewal decisions can be negatively predicted by the brokerage position in the early stage, and the closure position influences the renewal decision in a different way in the early and mature stages. These analytical results imply that a company should focus on developing patents that bridge different technologies as its technological developments reach maturity.

Suggested Citation

  • Jyun-Cheng Wang & Cheng-hsin Chiang & Shu-Wei Lin, 2010. "Network structure of innovation: can brokerage or closure predict patent quality?," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 735-748, September.
  • Handle: RePEc:spr:scient:v:84:y:2010:i:3:d:10.1007_s11192-010-0211-y
    DOI: 10.1007/s11192-010-0211-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-010-0211-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-010-0211-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    2. Cantner, Uwe & Graf, Holger, 2006. "The network of innovators in Jena: An application of social network analysis," Research Policy, Elsevier, vol. 35(4), pages 463-480, May.
    3. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    4. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
    5. repec:fth:harver:1473 is not listed on IDEAS
    6. Sternitzke, Christian & Bartkowski, Adam & Schramm, Reinhard, 2008. "Visualizing patent statistics by means of social network analysis tools," World Patent Information, Elsevier, vol. 30(2), pages 115-131, June.
    7. Arnold Verbeek & Koenraad Debackere & Marc Luwel & Petra Andries & Edwin Zimmermann & Filip Deleus, 2002. "Linking science to technology: Using bibliographic references in patents to build linkage schemes," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(3), pages 399-420, July.
    8. Martin Meyer, 2000. "What is Special about Patent Citations? Differences between Scientific and Patent Citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 49(1), pages 93-123, August.
    9. Paul Almeida & Anupama Phene, 2004. "Subsidiaries and knowledge creation: the influence of the MNC and host country on innovation," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 847-864, August.
    10. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    11. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    12. Owen-Smith, Jason & Powell, Walter W., 2003. "The expanding role of university patenting in the life sciences: assessing the importance of experience and connectivity," Research Policy, Elsevier, vol. 32(9), pages 1695-1711, October.
    13. Pakes, Ariel, 1985. "On Patents, R&D, and the Stock Market Rate of Return," Journal of Political Economy, University of Chicago Press, vol. 93(2), pages 390-409, April.
    14. Joshua Lerner, 1994. "The Importance of Patent Scope: An Empirical Analysis," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 319-333, Summer.
    15. Miotti, Luis & Sachwald, Frederique, 2003. "Co-operative R&D: why and with whom?: An integrated framework of analysis," Research Policy, Elsevier, vol. 32(8), pages 1481-1499, September.
    16. Blind, Knut & Cremers, Katrin & Mueller, Elisabeth, 2009. "The influence of strategic patenting on companies' patent portfolios," Research Policy, Elsevier, vol. 38(2), pages 428-436, March.
    17. Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
    18. Bessen, James, 2008. "The value of U.S. patents by owner and patent characteristics," Research Policy, Elsevier, vol. 37(5), pages 932-945, June.
    19. von Wartburg, Iwan & Teichert, Thorsten & Rost, Katja, 2005. "Inventive progress measured by multi-stage patent citation analysis," Research Policy, Elsevier, vol. 34(10), pages 1591-1607, December.
    20. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    21. Yadong Luo, 2008. "Procedural fairness and interfirm cooperation in strategic alliances," Strategic Management Journal, Wiley Blackwell, vol. 29(1), pages 27-46, January.
    22. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    23. Yong-Gil Lee, 2008. "Patent licensability and life: A study of U.S. patents registered by South Korean public research institutes," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(3), pages 463-471, June.
    24. R. J. W. Tussen & R. K. Buter & Th. N. van Leeuwen, 2000. "Technological Relevance of Science: An Assessment of Citation Linkages between Patents and Research Papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(2), pages 389-412, February.
    25. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    26. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    27. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sungchul Choi & Hyunseok Park, 2016. "Investigation of Strategic Changes Using Patent Co-Inventor Network Analysis: The Case of Samsung Electronics," Sustainability, MDPI, vol. 8(12), pages 1-13, December.
    2. JinHyo Joseph Yun & EuiSeob Jeong & JinSeu Park, 2016. "Network Analysis of Open Innovation," Sustainability, MDPI, vol. 8(8), pages 1-21, July.
    3. Li, Shuying & Garces, Edwin & Daim, Tugrul, 2019. "Technology forecasting by analogy-based on social network analysis: The case of autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    4. Gohar Feroz Khan & Junghoon Moon & Han Woo Park, 2011. "Network of the core: mapping and visualizing the core of scientific domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 759-779, December.
    5. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    6. Kuang-Cheng Chai & Yang Yang & Zhiyong Sui & Ke-Chiun Chang, 2020. "Determinants of highly-cited green patents: The perspective of network characteristics," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-13, October.
    7. Jiang, Hongxun & Fan, Shaokun & Zhang, Nan & Zhu, Bin, 2023. "Deep learning for predicting patent application outcome: The fusion of text and network embeddings," Journal of Informetrics, Elsevier, vol. 17(2).
    8. Way-Ren Huang & Chia-Jen Hsieh & Ke-Chiun Chang & Yen-Jo Kiang & Chien-Chung Yuan & Woei-Chyn Chu, 2017. "Network characteristics and patent value—Evidence from the Light-Emitting Diode industry," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-14, August.
    9. De Paulo, A.F. & Porto, G.S., 2023. "Unveiling the cooperation dynamics in the photovoltaic technologies’ development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. Jiancheng Guan & Yuan Shi, 2012. "Transnational citation, technological diversity and small world in global nanotechnology patenting," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 609-633, December.
    11. Xiaojun Hu & Ronald Rousseau & Jin Chen, 2012. "Structural indicators in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 451-460, May.
    12. Xuan Liu & Shan Jiang & Hsinchun Chen & Catherine A. Larson & Mihail C. Roco, 2015. "Modeling knowledge diffusion in scientific innovation networks: an institutional comparison between China and US with illustration for nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1953-1984, December.
    13. Beaudry, Catherine & Schiffauerova, Andrea, 2011. "Impacts of collaboration and network indicators on patent quality: The case of Canadian nanotechnology innovation," European Management Journal, Elsevier, vol. 29(5), pages 362-376.
    14. Gohar Feroz Khan, 2013. "Social media-based systems: an emerging area of information systems research and practice," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 159-180, April.
    15. Hsu, David W.L. & Yuan, Benjamin J.C., 2013. "Knowledge creation and diffusion of Taiwan's universities: Knowledge trajectory from patent data," Technology in Society, Elsevier, vol. 35(3), pages 172-181.
    16. Chih-cheng Lo & Hsin-Chuan Cho & Pin-Wei Wang, 2020. "Global R&D Collaboration in the Development of Nanotechnology: The Impact of R&D Collaboration Patterns on Patent Quality," Sustainability, MDPI, vol. 12(15), pages 1-12, July.
    17. Torben Schubert, 2011. "Assessing the value of patent portfolios: an international country comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 787-804, September.
    18. Tai Quan Peng & Zhen-Zhen Wang, 2013. "Network closure, brokerage, and structural influence of journals: a longitudinal study of journal citation network in Internet research (2000–2010)," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 675-693, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
    2. Nicolas van Zeebroeck, 2007. "Patents only live twice: a patent survival analysis in Europe," Working Papers CEB 07-028.RS, ULB -- Universite Libre de Bruxelles.
    3. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    4. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    5. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    6. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    7. Nicolas van Zeebroeck, 2011. "The puzzle of patent value indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(1), pages 33-62.
    8. Choi, Jin-Uk & Lee, Chang-Yang, 2022. "The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification," Technovation, Elsevier, vol. 118(C).
    9. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    10. Leila Tahmooresnejad & Catherine Beaudry, 2019. "Capturing the economic value of triadic patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 127-157, January.
    11. Appio, Francesco Paolo & Baglieri, Daniela & Cesaroni, Fabrizio & Spicuzza, Lucia & Donato, Alessia, 2022. "Patent design strategies: Empirical evidence from European patents," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    12. Chandra, Praveena & Dong, Andy, 2018. "The relation between knowledge accumulation and technical value in interdisciplinary technologies," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 235-244.
    13. Nagaoka, Sadao & Motohashi, Kazuyuki & Goto, Akira, 2010. "Patent Statistics as an Innovation Indicator," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1083-1127, Elsevier.
    14. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    15. Higham, Kyle & de Rassenfosse, Gaétan & Jaffe, Adam B., 2021. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," Research Policy, Elsevier, vol. 50(4).
    16. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    17. Leten, Bart & Kelchtermans, Stijn & Belderbos, Ren, 2010. "Internal Basic Research, External Basic Research and the Technological Performance of Pharmaceutical Firms," Working Papers 2010/12, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    18. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    19. Burak Dindaroglu, 2010. "Intra-Industry Knowledge Spillovers and Scientific Labor Mobility," Discussion Papers 10-01, University at Albany, SUNY, Department of Economics.
    20. Paola Giuri & Myriam Mariani & Stefano Brusoni & Gustavo Crespi & Dominique Francoz & Alfonso Gambardella & Walter Garcia-Fontes & Aldo Geuna & Raul Gonzales & Dietmar Harhoff & Karin Hoisl & Christia, 2005. "Everything you Always Wanted to Know about Inventors (but Never Asked): Evidence from the PatVal-EU Survey," LEM Papers Series 2005/20, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:84:y:2010:i:3:d:10.1007_s11192-010-0211-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.