IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v31y2009i1p73-84.html
   My bibliography  Save this article

Disembodied knowledge flows among industrial clusters: A patent analysis of the Korean manufacturing sector

Author

Listed:
  • Park, Jongyong
  • Lee, Hakyeon
  • Park, Yongtae

Abstract

Understanding inter-industrial knowledge flows lays the foundation for building knowledge clusters and designing a national innovation system (NIS). The types of knowledge measured can be distinguished as embodied knowledge flow and disembodied knowledge flow. Embodied knowledge flow takes place through the purchase of machinery, equipment, and components that incorporate new technologies; disembodied knowledge flow is the process whereby knowledge is disseminated through human mobility and research spillovers. Previous attempts to identify industrial clusters have mainly focused on the embodied knowledge flow.

Suggested Citation

  • Park, Jongyong & Lee, Hakyeon & Park, Yongtae, 2009. "Disembodied knowledge flows among industrial clusters: A patent analysis of the Korean manufacturing sector," Technology in Society, Elsevier, vol. 31(1), pages 73-84.
  • Handle: RePEc:eee:teinso:v:31:y:2009:i:1:p:73-84
    DOI: 10.1016/j.techsoc.2008.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X08000778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2008.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    2. Archibugi, Daniele & Coco, Alberto, 2005. "Measuring technological capabilities at the country level: A survey and a menu for choice," Research Policy, Elsevier, vol. 34(2), pages 175-194, March.
    3. Criscuolo, Paola, 2005. "On the road again: Researcher mobility inside the R&D network," Research Policy, Elsevier, vol. 34(9), pages 1350-1365, November.
    4. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    5. Hu, Albert G. Z. & Jaffe, Adam B., 2003. "Patent citations and international knowledge flow: the cases of Korea and Taiwan," International Journal of Industrial Organization, Elsevier, vol. 21(6), pages 849-880, June.
    6. Fromhold-Eisebith, Martina & Eisebith, Gunter, 2005. "How to institutionalize innovative clusters? Comparing explicit top-down and implicit bottom-up approaches," Research Policy, Elsevier, vol. 34(8), pages 1250-1268, October.
    7. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    8. Ejermo, Olof & Karlsson, Charlie, 2006. "Interregional inventor networks as studied by patent coinventorships," Research Policy, Elsevier, vol. 35(3), pages 412-430, April.
    9. Reitzig, Markus, 2004. "Improving patent valuations for management purposes--validating new indicators by analyzing application rationales," Research Policy, Elsevier, vol. 33(6-7), pages 939-957, September.
    10. Adam Jaffe & Manuel Trajtenberg, 1999. "International Knowledge Flows: Evidence From Patent Citations," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 8(1-2), pages 105-136.
    11. Mowery, David C. & Oxley, Joanne E. & Silverman, Brian S., 1998. "Technological overlap and interfirm cooperation: implications for the resource-based view of the firm," Research Policy, Elsevier, vol. 27(5), pages 507-523, September.
    12. Basberg, Bjorn L., 1987. "Patents and the measurement of technological change: A survey of the literature," Research Policy, Elsevier, vol. 16(2-4), pages 131-141, August.
    13. Jean O. Lanjouw & Mark Schankerman, 1999. "The Quality of Ideas: Measuring Innovation with Multiple Indicators," NBER Working Papers 7345, National Bureau of Economic Research, Inc.
    14. von Wartburg, Iwan & Teichert, Thorsten & Rost, Katja, 2005. "Inventive progress measured by multi-stage patent citation analysis," Research Policy, Elsevier, vol. 34(10), pages 1591-1607, December.
    15. Ernst, Holger, 2003. "Patent information for strategic technology management," World Patent Information, Elsevier, vol. 25(3), pages 233-242, September.
    16. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    17. Shin, Juneseuk & Park, Yongtae, 2007. "Building the national ICT frontier: The case of Korea," Information Economics and Policy, Elsevier, vol. 19(2), pages 249-277, June.
    18. Manuel Trajtenberg & Adam B. Jaffe & Michael S. Fogarty, 2000. "Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors," American Economic Review, American Economic Association, vol. 90(2), pages 215-218, May.
    19. Olav Sorenson & Jan W. Rivkin & Lee Fleming, 2010. "Complexity, Networks and Knowledge Flows," Chapters, in: Ron Boschma & Ron Martin (ed.), The Handbook of Evolutionary Economic Geography, chapter 15, Edward Elgar Publishing.
    20. Baptista, Rui, 2000. "Do innovations diffuse faster within geographical clusters?," International Journal of Industrial Organization, Elsevier, vol. 18(3), pages 515-535, April.
    21. Gay, Brigitte & Dousset, Bernard, 2005. "Innovation and network structural dynamics: Study of the alliance network of a major sector of the biotechnology industry," Research Policy, Elsevier, vol. 34(10), pages 1457-1475, December.
    22. Hirschey, Mark & Richardson, Vernon J., 2001. "Valuation effects of patent quality: A comparison for Japanese and U.S. firms," Pacific-Basin Finance Journal, Elsevier, vol. 9(1), pages 65-82, January.
    23. Narin, Francis & Noma, Elliot & Perry, Ross, 1987. "Patents as indicators of corporate technological strength," Research Policy, Elsevier, vol. 16(2-4), pages 143-155, August.
    24. Park, Yongtae & Yoon, Byungun & Lee, Sungjoo, 2005. "The idiosyncrasy and dynamism of technological innovation across industries: patent citation analysis," Technology in Society, Elsevier, vol. 27(4), pages 471-485.
    25. Han, Yoo-Jin & Park, Yongtae, 2006. "Patent network analysis of inter-industrial knowledge flows: The case of Korea between traditional and emerging industries," World Patent Information, Elsevier, vol. 28(3), pages 235-247, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo Giglio & Roberto Sbragia & Roberto Musmanno & Roberto Palmieri, 2021. "Cross-country learning from patents: an analysis of citations flows in innovation trajectories," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7917-7936, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choe, Hochull & Lee, Duk Hee & Kim, Hee Dae & Seo, Il Won, 2016. "Structural properties and inter-organizational knowledge flows of patent citation network: The case of organic solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 361-370.
    2. Choe, Hochull & Lee, Duk Hee & Seo, Il Won & Kim, Hee Dae, 2013. "Patent citation network analysis for the domain of organic photovoltaic cells: Country, institution, and technology field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 492-505.
    3. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    4. Kang, Jin-Su & Kholod, Tetyana & Downing, Stephen, 2015. "Analysis of Russia's biofuel knowledge base: A comparison with Germany and China," Energy Policy, Elsevier, vol. 85(C), pages 182-193.
    5. Jan M. Gerken & Martin G. Moehrle, 2012. "A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 645-670, June.
    6. Eun Han & So Sohn, 2015. "Patent valuation based on text mining and survival analysis," The Journal of Technology Transfer, Springer, vol. 40(5), pages 821-839, October.
    7. Show-Ling Jang & Shihmin Lo & Wen Hao Chang, 2009. "How do latecomers catch up with forerunners? Analysis of patents and patent citations in the field of flat panel display technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(3), pages 563-591, June.
    8. Carlo Giglio & Roberto Sbragia & Roberto Musmanno & Roberto Palmieri, 2021. "Cross-country learning from patents: an analysis of citations flows in innovation trajectories," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7917-7936, September.
    9. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    10. Albert Guangzhou Hu & Gary H. Jefferson, 2010. "Technology Policy for Sustained Asian Dynamism," Chapters, in: Masahiro Kawai & Jong-Wha Lee & Peter A. Petri & Giovanni Capanelli (ed.), Asian Regionalism in the World Economy, chapter 2, Edward Elgar Publishing.
    11. Youngjae Choi & Sanghyun Park & Sungjoo Lee, 2021. "Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5431-5476, July.
    12. Hsin-Ning Su & Carey Ming-Li Chen & Pei-Chun Lee, 2012. "Patent litigation precaution method: analyzing characteristics of US litigated and non-litigated patents from 1976 to 2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(1), pages 181-195, July.
    13. Shin, Juneseuk & Park, Yongtae, 2007. "Building the national ICT frontier: The case of Korea," Information Economics and Policy, Elsevier, vol. 19(2), pages 249-277, June.
    14. Park, Yongtae & Yoon, Byungun & Lee, Sungjoo, 2005. "The idiosyncrasy and dynamism of technological innovation across industries: patent citation analysis," Technology in Society, Elsevier, vol. 27(4), pages 471-485.
    15. Ta-Shun Cho & Hsin-Yu Shih, 2011. "Patent citation network analysis of core and emerging technologies in Taiwan: 1997–2008," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 795-811, December.
    16. Nikulainen, Tuomo & Hermans, Raine & Kulvik, Martti, 2006. "Patent citations indicating present value of the biotechnology business," Discussion Papers 1048, The Research Institute of the Finnish Economy.
    17. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    18. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    19. Emanuele Bacchiocchi & Fabio Montobbio, 2010. "International Knowledge Diffusion and Home‐bias Effect: Do USPTO and EPO Patent Citations Tell the Same Story?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 112(3), pages 441-470, September.
    20. Inchae Park & Yujin Jeong & Byungun Yoon, 2017. "Analyzing the value of technology based on the differences of patent citations between applicants and examiners," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 665-691, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:31:y:2009:i:1:p:73-84. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.