IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v51y2015icp1594-1609.html
   My bibliography  Save this article

Social problems of green buildings: From the humanistic needs to social acceptance

Author

Listed:
  • Zhao, Dong-Xue
  • He, Bao-Jie
  • Johnson, Christine
  • Mou, Ben

Abstract

In the past few decades, scholars have conducted research and held discussions on green building to highlight their vital significance in addressing environmental, economic and social challenges. It is recognized that public attitudes and views towards green building may affect its application in daily lives, although studies on consumers׳ cognition are rarely carried out. The social problems related to green building such as consumers׳ basic understanding, purchase intention, social and humanistic needs, public attitudes and behaviors, rebound effects and furthermore social acceptance are therefore studied, based on three research methods including literature review, questionnaire and inductive analysis. Through the analysis, following results can be obtained: (i) green building׳s sustainable design has quite important influence over consumers׳ decision making process. The general public maintains a high regard for the advantages of green building, where better ventilation and lighting is a major benefit, saving energy and water are the second rated, and then land and construction material saving. (ii) Although the general public is not being familiar with the concept of green building, the majority of participants would pay more for green buildings over the standard building when they know the environmental impacts of them. (iii) Green building should not only be limited to energy performance-oriented, but also be user-oriented, the social and humanistic needs model is thus well established based on Maslow׳s Hierarchy of Needs. In the life cycle of green building, social and humanistic needs show a trend of dynamics, which means social processes with consumer engagement and participation needs to be considered in aspects of conceptual design, planning and design, operation and maintenance to improve users׳ happiness and productivity. (iv)Current user-oriented solutions to green building are always based on a hypothesis that consumers are readily motivated or prefer expensive goods for reducing energy use, to really reflect preference and influenced actions, social acceptance should be analyzed to fully gauge interest and perspective of the people. (v) Rebound effects of post-occupant building performance, including energy performance, human comfort, indoor environmental quality, greenhouse gas emission and workplace productivity can be divided into two stages. At present, it is necessary to establish appropriate samples, methods and parameters for an unbiased and valid post-occupant evaluation system. In addition, the social acceptance of green building framework is established based on Wüstenhagen et al. triangular model for renewable energy innovation. All the explorations to social problems of green building in this article are expected to provide a healthy social basis for the development of this green strategy.

Suggested Citation

  • Zhao, Dong-Xue & He, Bao-Jie & Johnson, Christine & Mou, Ben, 2015. "Social problems of green buildings: From the humanistic needs to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1594-1609.
  • Handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:1594-1609
    DOI: 10.1016/j.rser.2015.07.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115007194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.07.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seyfang, Gill, 2010. "Community action for sustainable housing: Building a low-carbon future," Energy Policy, Elsevier, vol. 38(12), pages 7624-7633, December.
    2. Piet Eichholtz & Nils Kok & John M. Quigley, 2013. "The Economics of Green Building," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 50-63, March.
    3. Middlemiss, Lucie & Parrish, Bradley D., 2010. "Building capacity for low-carbon communities: The role of grassroots initiatives," Energy Policy, Elsevier, vol. 38(12), pages 7559-7566, December.
    4. Pat McAllister & Franz Fuerst & Buki Ekeowa, 2011. "The Impact of Energy Performance Certificates on the Rental and Capital Values of Commercial Property," ERES eres2011_89, European Real Estate Society (ERES).
    5. Kelly, S., 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector," Cambridge Working Papers in Economics 1139, Faculty of Economics, University of Cambridge.
    6. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    7. Fuerst, Franz & McAllister, Patrick, 2011. "The impact of Energy Performance Certificates on the rental and capital values of commercial property assets," Energy Policy, Elsevier, vol. 39(10), pages 6608-6614, October.
    8. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    9. Ward, David O. & Clark, Christopher D. & Jensen, Kimberly L. & Yen, Steven T. & Russell, Clifford S., 2011. "Factors influencing willingness-to-pay for the ENERGY STAR® label," Energy Policy, Elsevier, vol. 39(3), pages 1450-1458, March.
    10. Keirstead, James, 2006. "Evaluating the applicability of integrated domestic energy consumption frameworks in the UK," Energy Policy, Elsevier, vol. 34(17), pages 3065-3077, November.
    11. Franz Fuerst & Patrick McAllister, 2009. "An Investigation of the Effect of Eco-Labeling on Office Occupancy Rates," Real Estate & Planning Working Papers rep-wp2009-08, Henley Business School, University of Reading.
    12. Janda, Kathryn B., 2014. "Building communities and social potential: Between and beyond organizations and individuals in commercial properties," Energy Policy, Elsevier, vol. 67(C), pages 48-55.
    13. repec:arz:wpaper:eres2011-89 is not listed on IDEAS
    14. Lin, Boqiang & Li, Jianglong, 2014. "The rebound effect for heavy industry: Empirical evidence from China," Energy Policy, Elsevier, vol. 74(C), pages 589-599.
    15. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    16. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    17. Kelly, Scott, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector," Energy, Elsevier, vol. 36(9), pages 5610-5620.
    18. Mallett, Alexandra, 2007. "Social acceptance of renewable energy innovations: The role of technology cooperation in urban Mexico," Energy Policy, Elsevier, vol. 35(5), pages 2790-2798, May.
    19. Longo, Alberto & Markandya, Anil & Petrucci, Marta, 2008. "The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy," Ecological Economics, Elsevier, vol. 67(1), pages 140-152, August.
    20. He, Bao-jie & Ye, Miao & Yang, Li & Fu, Xiang-Ping & Mou, Ben & Griffy-Brown, Charla, 2014. "The combination of digital technology and architectural design to develop a process for enhancing energy-saving: The case of Maanshan China," Technology in Society, Elsevier, vol. 39(C), pages 77-87.
    21. Zoellner, Jan & Schweizer-Ries, Petra & Wemheuer, Christin, 2008. "Public acceptance of renewable energies: Results from case studies in Germany," Energy Policy, Elsevier, vol. 36(11), pages 4136-4141, November.
    22. Heiskanen, Eva & Johnson, Mikael & Robinson, Simon & Vadovics, Edina & Saastamoinen, Mika, 2010. "Low-carbon communities as a context for individual behavioural change," Energy Policy, Elsevier, vol. 38(12), pages 7586-7595, December.
    23. Gross, Catherine, 2007. "Community perspectives of wind energy in Australia: The application of a justice and community fairness framework to increase social acceptance," Energy Policy, Elsevier, vol. 35(5), pages 2727-2736, May.
    24. Bon‐Gang Hwang & Jac See Tan, 2012. "Green building project management: obstacles and solutions for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 20(5), pages 335-349, September.
    25. Harty D. Saunders, 1992. "The Khazzoom-Brookes Postulate and Neoclassical Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 131-148.
    26. Chan, Edwin H.W. & Qian, Queena K. & Lam, Patrick T.I., 2009. "The market for green building in developed Asian cities--the perspectives of building designers," Energy Policy, Elsevier, vol. 37(8), pages 3061-3070, August.
    27. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    28. Lim, Xin-Le & Lam, Wei-Haur, 2014. "Public Acceptance of Marine Renewable Energy in Malaysia," Energy Policy, Elsevier, vol. 65(C), pages 16-26.
    29. Pfeffer, Jeffrey, 2010. "Building Sustainable Organizations: The Human Factor," Research Papers 2017r, Stanford University, Graduate School of Business.
    30. Iniyan, S & Suganthi, L & Samuel, Anand A, 2001. "A survey of social acceptance in using renewable energy sources for the new millennium," Renewable Energy, Elsevier, vol. 24(3), pages 657-661.
    31. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    32. Piet Eichholtz & Nils Kok & John M. Quigley, 2010. "Doing Well by Doing Good? Green Office Buildings," American Economic Review, American Economic Association, vol. 100(5), pages 2492-2509, December.
    33. Peters, Michael & Fudge, Shane & Sinclair, Philip, 2010. "Mobilising community action towards a low-carbon future: Opportunities and challenges for local government in the UK," Energy Policy, Elsevier, vol. 38(12), pages 7596-7603, December.
    34. Walker, Gordon, 2008. "What are the barriers and incentives for community-owned means of energy production and use?," Energy Policy, Elsevier, vol. 36(12), pages 4401-4405, December.
    35. Zuo, Jian & Zhao, Zhen-Yu, 2014. "Green building research–current status and future agenda: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 271-281.
    36. Lin, Boqiang & Liu, Xia, 2012. "Dilemma between economic development and energy conservation: Energy rebound effect in China," Energy, Elsevier, vol. 45(1), pages 867-873.
    37. Karkanias, C. & Boemi, S.N. & Papadopoulos, A.M. & Tsoutsos, T.D. & Karagiannidis, A., 2010. "Energy efficiency in the Hellenic building sector: An assessment of the restrictions and perspectives of the market," Energy Policy, Elsevier, vol. 38(6), pages 2776-2784, June.
    38. Maarten Wolsink & Sylvia Breukers, 2010. "Contrasting the core beliefs regarding the effective implementation of wind power. An international study of stakeholder perspectives," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 53(5), pages 535-558.
    39. Kahn, Robert D., 2000. "Siting Struggles: The Unique Challenge of Permitting Renewable Energy Power Plants," The Electricity Journal, Elsevier, vol. 13(2), pages 21-33, March.
    40. Li, Baizhan & Yao, Runming, 2009. "Urbanisation and its impact on building energy consumption and efficiency in China," Renewable Energy, Elsevier, vol. 34(9), pages 1994-1998.
    41. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    42. Elizabeth J. Mueller & Frederick Steiner, 2011. "Integrating equity and environmental goals in local housing policy," Housing Policy Debate, Taylor & Francis Journals, vol. 21(1), pages 93-98, January.
    43. Huijts, Nicole M.A. & Midden, Cees J.H. & Meijnders, Anneloes L., 2007. "Social acceptance of carbon dioxide storage," Energy Policy, Elsevier, vol. 35(5), pages 2780-2789, May.
    44. Stigka, Eleni K. & Paravantis, John A. & Mihalakakou, Giouli K., 2014. "Social acceptance of renewable energy sources: A review of contingent valuation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 100-106.
    45. Jonathan Wiley & Justin Benefield & Ken Johnson, 2010. "Green Design and the Market for Commercial Office Space," The Journal of Real Estate Finance and Economics, Springer, vol. 41(2), pages 228-243, August.
    46. Yuan, Xueliang & Zuo, Jian & Ma, Chunyuan, 2011. "Social acceptance of solar energy technologies in China--End users' perspective," Energy Policy, Elsevier, vol. 39(3), pages 1031-1036, March.
    47. Glass, Jacqueline & Dainty, Andrew R.J. & Gibb, Alistair G.F., 2008. "New build: Materials, techniques, skills and innovation," Energy Policy, Elsevier, vol. 36(12), pages 4534-4538, December.
    48. Sedlacek, Sabine & Maier, Gunther, 2012. "Can green building councils serve as third party governance institutions? An economic and institutional analysis," Energy Policy, Elsevier, vol. 49(C), pages 479-487.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    2. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    3. Zhang, Li & Wu, Jing & Liu, Hongyu, 2018. "Policies to enhance the drivers of green housing development in China," Energy Policy, Elsevier, vol. 121(C), pages 225-235.
    4. Fuerst, Franz & Warren-Myers, Georgia, 2018. "Does voluntary disclosure create a green lemon problem? Energy-efficiency ratings and house prices," Energy Economics, Elsevier, vol. 74(C), pages 1-12.
    5. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.
    6. Bienert, Sven, . "METASTUDIE :NACHHALTIGKEIT CONTRA RENDITE? Die Implikationen nachhaltigen Wirtschaftens für offene Immobilienfonds am Beispiel der Deka Immobilien Investment GmbH und der WestInvest GmbH," Beiträge zur Immobilienwirtschaft, University of Regensburg, Department of Economics, number 14, August.
    7. Khazal, Aras & Sønstebø, Ole Jakob, 2020. "Valuation of energy performance certificates in the rental market – Professionals vs. nonprofessionals," Energy Policy, Elsevier, vol. 147(C).
    8. Martin, Nigel & Rice, John, 2015. "Improving Australia's renewable energy project policy and planning: A multiple stakeholder analysis," Energy Policy, Elsevier, vol. 84(C), pages 128-141.
    9. Ana Ramos & Alicia Pérez-Alonso & Susana Silva, 2015. "Valuing Energy Performance Certificates in the Portuguese Residential," Working Papers 02-2015, Economics for Energy.
    10. Lin, Boqiang & Yang, Fang & Liu, Xia, 2013. "A study of the rebound effect on China's current energy conservation and emissions reduction: Measures and policy choices," Energy, Elsevier, vol. 58(C), pages 330-339.
    11. Odilon Costa & Franz Fuerst & Spenser Robinson & Wesley Mendes-da-Silva, 2017. "Are Green Labels More Valuable in Emerging Real Estate Markets?," LARES lares_2017_paper_5, Latin American Real Estate Society (LARES).
    12. Fuerst, Franz & McAllister, Patrick & Nanda, Anupam & Wyatt, Peter, 2015. "Does energy efficiency matter to home-buyers? An investigation of EPC ratings and transaction prices in England," Energy Economics, Elsevier, vol. 48(C), pages 145-156.
    13. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    14. Galvin, Ray & Sunikka-Blank, Minna, 2016. "Quantification of (p)rebound effects in retrofit policies – Why does it matter?," Energy, Elsevier, vol. 95(C), pages 415-424.
    15. Niina Leskinen & Jussi Vimpari & Seppo Junnila, 2020. "A Review of the Impact of Green Building Certification on the Cash Flows and Values of Commercial Properties," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
    16. Ana María González & Harrison Sandoval & Pilar Acosta & Felipe Henao, 2016. "On the Acceptance and Sustainability of Renewable Energy Projects—A Systems Thinking Perspective," Sustainability, MDPI, vol. 8(11), pages 1-21, November.
    17. Busse, Maria & Siebert, Rosemarie, 2018. "Acceptance studies in the field of land use—A critical and systematic review to advance the conceptualization of acceptance and acceptability," Land Use Policy, Elsevier, vol. 76(C), pages 235-245.
    18. Zhang, Xiaoling, 2015. "Green real estate development in China: State of art and prospect agenda—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 1-13.
    19. Benedetto Manganelli & Pierluigi Morano & Francesco Tajani & Francesca Salvo, 2019. "Affordability Assessment of Energy-Efficient Building Construction in Italy," Sustainability, MDPI, vol. 11(1), pages 1-17, January.
    20. Lin, Boqiang & Liu, Xia, 2012. "Dilemma between economic development and energy conservation: Energy rebound effect in China," Energy, Elsevier, vol. 45(1), pages 867-873.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:1594-1609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.