IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v49y2015icp610-628.html
   My bibliography  Save this article

Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems

Author

Listed:
  • Breyer, Christian
  • Koskinen, Otto
  • Blechinger, Philipp

Abstract

In a world constrained by climate change, it is of utmost relevance that energy technologies offer a low level of greenhouse gas (GHG) emissions at a comparatively low cost level. A literature overview is presented, which shows that the common view of PV systems contradicts its position as an economically viable key solution in reducing greenhouse gas (GHG) emissions. However, most of the found research is outdated and instead of being a region-oriented specific analysis, most of the research has focused on general cost level calculations. A simple methodology is introduced for estimating the climate change mitigation relevance of PV systems by calculating the avoided GHG emissions for specific representative PV applications in respective regions. The potential of GHG mitigation by PV systems is combined with the related economics based on discounted cash flow calculus. PV applications ranging from small PV systems in rural off-grid regions up to large scale PV power plants and commercial PV rooftop systems show financial benefits for avoided GHG emissions. Even in Germany, the costs of avoiding GHG emissions using residential rooftop systems are 17–70€/tCO2eq depending on the applied assumptions. These costs are distinctly lower than the 80€/tCO2eq threshold for the cost of climate change impacts. PV power plants in Germany show financial benefits of 19–93€/tCO2eq for avoiding GHG emissions. Summing up, PV systems are a highly attractive climate change mitigation option.

Suggested Citation

  • Breyer, Christian & Koskinen, Otto & Blechinger, Philipp, 2015. "Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 610-628.
  • Handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:610-628
    DOI: 10.1016/j.rser.2015.04.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115003317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palzer, Andreas & Henning, Hans-Martin, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1019-1034.
    2. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
    3. Karahan, Hatice & Toptas, Mehmet, 2013. "The effect of power distribution privatization on electricity prices in Turkey: Has liberalization served the purpose?," Energy Policy, Elsevier, vol. 63(C), pages 614-621.
    4. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    5. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
    6. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
    7. Bakhtyar, B. & Ibrahim, Y. & Alghoul, M.A. & Aziz, N. & Fudholi, A. & Sopian, K., 2014. "Estimating the CO2 abatement cost: Substitute Price of Avoiding CO2 Emission (SPAE) by Renewable Energy׳s Feed in Tariff in selected countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 205-210.
    8. Radoslaw (Radek) Stefanski, 2014. "Dirty Little Secrets: Inferring Fossil-Fuel Subsidies from Patterns in Emission Intensities," OxCarre Working Papers 134, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    9. Henning, Hans-Martin & Palzer, Andreas, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1003-1018.
    10. Claudio Marcantonini & A. Denny Ellerman, 2014. "The Implicit Carbon Price of Renewable Energy. Incentives in Germany," RSCAS Working Papers 2014/28, European University Institute.
    11. Stern, Roger J., 2010. "United States cost of military force projection in the Persian Gulf, 1976-2007," Energy Policy, Elsevier, vol. 38(6), pages 2816-2825, June.
    12. Paul Lehmann & Felix Creutzig & Melf-Hinrich Ehlers & Nele Friedrichsen & Clemens Heuson & Lion Hirth & Robert Pietzcker, 2012. "Carbon Lock-Out: Advancing Renewable Energy Policy in Europe," Energies, MDPI, Open Access Journal, vol. 5(2), pages 1-32, February.
    13. Van den Bergh, Kenneth & Delarue, Erik & D'haeseleer, William, 2013. "Impact of renewables deployment on the CO2 price and the CO2 emissions in the European electricity sector," Energy Policy, Elsevier, vol. 63(C), pages 1021-1031.
    14. Fabian Kesicki & Paul Ekins, 2012. "Marginal abatement cost curves: a call for caution," Climate Policy, Taylor & Francis Journals, vol. 12(2), pages 219-236, March.
    15. Zweibel, Ken, 2010. "Should solar photovoltaics be deployed sooner because of long operating life at low, predictable cost?," Energy Policy, Elsevier, vol. 38(11), pages 7519-7530, November.
    16. Kuik, Onno & Brander, Luke & Tol, Richard S.J., 2009. "Marginal abatement costs of greenhouse gas emissions: A meta-analysis," Energy Policy, Elsevier, vol. 37(4), pages 1395-1403, April.
    17. Perez, Richard & Zweibel, Ken & Hoff, Thomas E., 2011. "Solar power generation in the US: Too expensive, or a bargain?," Energy Policy, Elsevier, vol. 39(11), pages 7290-7297.
    18. Aldy, Joseph E. & Pizer, William A., 2014. "Comparability of Effort in International Climate Policy Architecture," Working Paper Series rwp14-006, Harvard University, John F. Kennedy School of Government.
    19. A. Denny Ellerman, 2014. "The Implicit Carbon Price of Renewable Energy. Incentives in Germany," EUI-RSCAS Working Papers p0376, European University Institute (EUI), Robert Schuman Centre of Advanced Studies (RSCAS).
    20. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Projected costs of a grid-connected domestic PV system under different scenarios in Ireland, using measured data from a trial installation," Energy Policy, Elsevier, vol. 38(7), pages 3731-3743, July.
    21. Hamilton, Kirk & Stover, Jana, 2012. "Economic analysis of projects in a greenhouse world," Policy Research Working Paper Series 6117, The World Bank.
    22. Commission, Productivity, 2011. "Carbon Emission Policies in Key Economies," Research Reports, Productivity Commission, Government of Australia, number 47.
    23. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhatti, Abdul Rauf & Salam, Zainal, 2018. "A rule-based energy management scheme for uninterrupted electric vehicles charging at constant price using photovoltaic-grid system," Renewable Energy, Elsevier, vol. 125(C), pages 384-400.
    2. Qiu, Yueming (Lucy) & Wang, Yi David & Xing, Bo, 2021. "Grid impact of non-residential distributed solar energy and reduced air emissions: Empirical evidence from individual-consumer-level smart meter data," Applied Energy, Elsevier, vol. 290(C).
    3. Gabriel Constantino & Marcos Freitas & Neilton Fidelis & Marcio Giannini Pereira, 2018. "Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts," Energies, MDPI, Open Access Journal, vol. 11(10), pages 1-28, October.
    4. Moner-Girona, M. & Solano-Peralta, M. & Lazopoulou, M. & Ackom, E.K. & Vallve, X. & Szabó, S., 2018. "Electrification of Sub-Saharan Africa through PV/hybrid mini-grids: Reducing the gap between current business models and on-site experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1148-1161.
    5. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    6. Blechinger, P. & Cader, C. & Bertheau, P. & Huyskens, H. & Seguin, R. & Breyer, C., 2016. "Global analysis of the techno-economic potential of renewable energy hybrid systems on small islands," Energy Policy, Elsevier, vol. 98(C), pages 674-687.
    7. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    8. Mauleón, Ignacio, 2019. "Assessing PV and wind roadmaps: Learning rates, risk, and social discounting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 71-89.
    9. Pinto, Mauricio Almeida & Frate, Cláudio Albuquerque & Rodrigues, Thiago Oliveira & Caldeira-Pires, Armando, 2020. "Sensitivity analysis of the carbon payback time for a Brazilian photovoltaic power plant," Utilities Policy, Elsevier, vol. 63(C).
    10. Gabriel Constantino de Lima & Andre Luiz Lopes Toledo & Leonidas Bourikas, 2021. "The Role of National Energy Policies and Life Cycle Emissions of PV Systems in Reducing Global Net Emissions of Greenhouse Gases," Energies, MDPI, Open Access Journal, vol. 14(4), pages 1-19, February.
    11. Morris Brenna & Federica Foiadelli & Michela Longo & Dario Zaninelli, 2017. "Improvement of Wind Energy Production through HVDC Systems," Energies, MDPI, Open Access Journal, vol. 10(2), pages 1-25, January.
    12. Parisi, M.L. & Maranghi, S. & Vesce, L. & Sinicropi, A. & Di Carlo, A. & Basosi, R., 2020. "Prospective life cycle assessment of third-generation photovoltaics at the pre-industrial scale: A long-term scenario approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    13. Santra, Priyabrata, 2021. "Performance evaluation of solar PV pumping system for providing irrigation through micro-irrigation techniques using surface water resources in hot arid region of India," Agricultural Water Management, Elsevier, vol. 245(C).
    14. El Kolaly, Wael & Ma, Wenhui & Li, Ming & Darwesh, Mohammed, 2020. "The investigation of energy production and mushroom yield in greenhouse production based on mono photovoltaic cells effect," Renewable Energy, Elsevier, vol. 159(C), pages 506-518.
    15. Siavash Khalili & Eetu Rantanen & Dmitrii Bogdanov & Christian Breyer, 2019. "Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World," Energies, MDPI, Open Access Journal, vol. 12(20), pages 1-54, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    2. Ramli, Makbul A.M. & Twaha, Ssennoga, 2015. "Analysis of renewable energy feed-in tariffs in selected regions of the globe: Lessons for Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 649-661.
    3. Sotiriou, Chryso & Michopoulos, Apostolos & Zachariadis, Theodoros, 2019. "On the cost-effectiveness of national economy-wide greenhouse gas emissions abatement measures," Energy Policy, Elsevier, vol. 128(C), pages 519-529.
    4. Van den Bergh, Kenneth & Delarue, Erik, 2015. "Quantifying CO2 abatement costs in the power sector," Energy Policy, Elsevier, vol. 80(C), pages 88-97.
    5. Timmons, David & Konstantinidis, Charalampos & Shapiro, Andrew M. & Wilson, Alex, 2016. "Decarbonizing residential building energy: A cost-effective approach," Energy Policy, Elsevier, vol. 92(C), pages 382-392.
    6. Geoffrey J. Blanford & Christoph Weissbart, 2019. "A Framework for Modeling the Dynamics of Power Markets – The EU-REGEN Model," ifo Working Paper Series 307, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    7. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    8. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    9. Timilsina, Govinda R. & Sikharulidze, Anna & Karapoghosyan, Eduard & Shatvoryan, Suren, 2017. "Development of marginal abatement cost curves for the building sector in Armenia and Georgia," Energy Policy, Elsevier, vol. 108(C), pages 29-43.
    10. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    11. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    12. Creutzig, Felix & Goldschmidt, Jan Christoph & Lehmann, Paul & Schmid, Eva & von Blücher, Felix & Breyer, Christian & Fernandez, Blanca & Jakob, Michael & Knopf, Brigitte & Lohrey, Steffen & Susca, Ti, 2014. "Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1015-1028.
    13. Müller, C. & Hoffrichter, A. & Wyrwoll, L. & Schmitt, C. & Trageser, M. & Kulms, T. & Beulertz, D. & Metzger, M. & Duckheim, M. & Huber, M. & Küppers, M. & Most, D. & Paulus, S. & Heger, H.J. & Schnet, 2019. "Modeling framework for planning and operation of multi-modal energy systems in the case of Germany," Applied Energy, Elsevier, vol. 250(C), pages 1132-1146.
    14. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    15. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    16. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, Open Access Journal, vol. 13(21), pages 1-42, November.
    17. Stefano Carattini & Andrea Baranzini & Philippe Thalmann & Frédéric Varone & Frank Vöhringer, 2017. "Green Taxes in a Post-Paris World: Are Millions of Nays Inevitable?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 97-128, September.
    18. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    19. Hai Lu & Jiaquan Yang & Kari Alanne, 2018. "Energy Quality Management for a Micro Energy Network Integrated with Renewables in a Tourist Area: A Chinese Case Study," Energies, MDPI, Open Access Journal, vol. 11(4), pages 1-24, April.
    20. Egli, Philipp & Lecuyer, Oskar, 2017. "Quantifying the net cost of a carbon price floor in Germany," Energy Policy, Elsevier, vol. 109(C), pages 685-693.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:610-628. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.