IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v80y2015icp88-97.html
   My bibliography  Save this article

Quantifying CO2 abatement costs in the power sector

Author

Listed:
  • Van den Bergh, Kenneth
  • Delarue, Erik

Abstract

CO2 cap-and-trade mechanisms and CO2 emission taxes are becoming increasingly widespread. To assess the impact of a CO2 price, marginal abatement cost curves (MACCs) are a commonly used tool by policy makers, providing a direct graphical link between a CO2 price and the expected abatement. However, such MACCs can suffer from issues related to robustness and granularity. This paper focuses on the relation between a CO2 emission cost and CO2 emission reductions in the power sector. The authors present a new methodology that improves the understanding of the relation between a CO2 cost and CO2 abatement. The methodology is based on the insight that CO2 emissions in the power sector are driven by the composition of the conventional power portfolio, the residual load and the generation costs of the conventional units. The methodology addresses both the robustness issue and the granularity issue related to MACCs. The methodology is based on a bottom-up approach, starting from engineering knowledge of the power sector. It offers policy makers a new tool to assess CO2 abatement options. The methodology is applied to the Central Western European power system and illustrates possible interaction effects between, e.g., fuel switching and renewables deployment.

Suggested Citation

  • Van den Bergh, Kenneth & Delarue, Erik, 2015. "Quantifying CO2 abatement costs in the power sector," Energy Policy, Elsevier, vol. 80(C), pages 88-97.
  • Handle: RePEc:eee:enepol:v:80:y:2015:i:c:p:88-97
    DOI: 10.1016/j.enpol.2015.01.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515000439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.01.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Criqui, Patrick & Mima, Silvana & Viguier, Laurent, 1999. "Marginal abatement costs of CO2 emission reductions, geographical flexibility and concrete ceilings: an assessment using the POLES model," Energy Policy, Elsevier, vol. 27(10), pages 585-601, October.
    2. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
    3. Van den Bergh, Kenneth & Delarue, Erik & D'haeseleer, William, 2013. "Impact of renewables deployment on the CO2 price and the CO2 emissions in the European electricity sector," Energy Policy, Elsevier, vol. 63(C), pages 1021-1031.
    4. Fabian Kesicki & Paul Ekins, 2012. "Marginal abatement cost curves: a call for caution," Climate Policy, Taylor & Francis Journals, vol. 12(2), pages 219-236, March.
    5. Klepper, Gernot & Peterson, Sonja & Springer, Katrin, 2003. "DART97: a description of the multi-regional, multi-sectoral trade model for the analysis of climate policies," Kiel Working Papers 1149, Kiel Institute for the World Economy (IfW Kiel).
    6. Rootzén, Johan & Johnsson, Filip, 2013. "Exploring the limits for CO2 emission abatement in the EU power and industry sectors—Awaiting a breakthrough," Energy Policy, Elsevier, vol. 59(C), pages 443-458.
    7. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
    8. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    9. Xavier Labandeira, Pedro Linares and Miguel Rodriguez, 2009. "An Integrated Approach to Simulate the impacts of Carbon Emissions Trading Schemes," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    10. Delarue, E.D. & Ellerman, A.D. & D'haeseleer, W.D., 2010. "Robust MACCs? The topography of abatement by fuel switching in the European power sector," Energy, Elsevier, vol. 35(3), pages 1465-1475.
    11. Weigt, Hannes & Ellerman, Denny & Delarue, Erik, 2013. "CO2 abatement from renewables in the German electricity sector: Does a CO2 price help?," Energy Economics, Elsevier, vol. 40(S1), pages 149-158.
    12. Klepper, Gernot & Peterson, Sonja, 2006. "Marginal abatement cost curves in general equilibrium: The influence of world energy prices," Resource and Energy Economics, Elsevier, vol. 28(1), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leroutier, Marion, 2022. "Carbon pricing and power sector decarbonization: Evidence from the UK," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    2. He, Weijun & Yang, Yi & Wang, Zhaohua & Zhu, Joe, 2018. "Estimation and allocation of cost savings from collaborative CO2 abatement in China," Energy Economics, Elsevier, vol. 72(C), pages 62-74.
    3. Pedro M. S. Frade & João V. G. A. Vieira-Costa & Gerardo J. Osório & João J. E. Santana & João P. S. Catalão, 2018. "Influence of Wind Power on Intraday Electricity Spot Market: A Comparative Study Based on Real Data," Energies, MDPI, vol. 11(11), pages 1-19, November.
    4. Dai, Sheng & Zhou, Xun & Kuosmanen, Timo, 2020. "Forward-looking assessment of the GHG abatement cost: Application to China," Energy Economics, Elsevier, vol. 88(C).
    5. Jin-Feng Zhou & Juan Wu & Wei Chen & Dan Wu, 2022. "Carbon Emission Reduction Cost Assessment Using Multiregional Computable General Equilibrium Model: Guangdong–Hong Kong–Macao Greater Bay Area," Sustainability, MDPI, vol. 14(17), pages 1-26, August.
    6. Ahn, Young-Hwan & Jeon, Wooyoung, 2019. "Power sector reform and CO2 abatement costs in Korea," Energy Policy, Elsevier, vol. 131(C), pages 202-214.
    7. Delarue, Erik & Van den Bergh, Kenneth, 2016. "Carbon mitigation in the electric power sector under cap-and-trade and renewables policies," Energy Policy, Elsevier, vol. 92(C), pages 34-44.
    8. Richstein, Jörn C. & Chappin, Émile J.L. & de Vries, Laurens J., 2015. "The market (in-)stability reserve for EU carbon emission trading: Why it might fail and how to improve it," Utilities Policy, Elsevier, vol. 35(C), pages 1-18.
    9. Misconel, Steffi & Prina, Matteo Giacomo & Hobbie, Hannes & Möst, Dominik & Sparber, Wolfram, 2022. "How to determine bottom-up model-derived marginal CO2 abatement cost curves with high temporal, sectoral, and techno-economic resolution?," EconStor Preprints 260472, ZBW - Leibniz Information Centre for Economics.
    10. Jenny Gabriela Peña Balderrama & Thomas Alfstad & Constantinos Taliotis & Mohammad Reza Hesamzadeh & Mark Howells, 2018. "A Sketch of Bolivia’s Potential Low-Carbon Power System Configurations. The Case of Applying Carbon Taxation and Lowering Financing Costs," Energies, MDPI, vol. 11(10), pages 1-20, October.
    11. Woo, C.K. & Olson, A. & Chen, Y. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Does California's CO2 price affect wholesale electricity prices in the Western U.S.A.?," Energy Policy, Elsevier, vol. 110(C), pages 9-19.
    12. Ortega-Izquierdo, Margarita & Río, Pablo del, 2020. "An analysis of the socioeconomic and environmental benefits of wind energy deployment in Europe," Renewable Energy, Elsevier, vol. 160(C), pages 1067-1080.
    13. Marion Leroutier, 2021. "Carbon Pricing and Power Sector Decarbonisation: Evidence from the UK," Working Papers halshs-03265636, HAL.
    14. Steve Dahlke, 2019. "Short Run Effects of Carbon Policy on U.S. Electricity Markets," Energies, MDPI, vol. 12(11), pages 1-21, June.
    15. Patteeuw, Dieter & Reynders, Glenn & Bruninx, Kenneth & Protopapadaki, Christina & Delarue, Erik & D’haeseleer, William & Saelens, Dirk & Helsen, Lieve, 2015. "CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects," Applied Energy, Elsevier, vol. 156(C), pages 490-501.
    16. Marion Leroutier, 2021. "Carbon Pricing and Power Sector Decarbonisation: Evidence from the UK," CIRED Working Papers halshs-03265636, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levihn, Fabian, 2016. "On the problem of optimizing through least cost per unit, when costs are negative: Implications for cost curves and the definition of economic efficiency," Energy, Elsevier, vol. 114(C), pages 1155-1163.
    2. Ahn, Young-Hwan & Jeon, Wooyoung, 2019. "Power sector reform and CO2 abatement costs in Korea," Energy Policy, Elsevier, vol. 131(C), pages 202-214.
    3. Heitmann, Nadine & Peterson, Sonja, 2012. "The potential contribution of the shipping sector to an efficient reduction of global carbon dioxide emissions," Kiel Working Papers 1813, Kiel Institute for the World Economy (IfW Kiel).
    4. Guo, Jian-Xin & Zhu, Lei & Fan, Ying, 2016. "Emission path planning based on dynamic abatement cost curve," European Journal of Operational Research, Elsevier, vol. 255(3), pages 996-1013.
    5. Levihn, F. & Nuur, C. & Laestadius, S., 2014. "Marginal abatement cost curves and abatement strategies: Taking option interdependency and investments unrelated to climate change into account," Energy, Elsevier, vol. 76(C), pages 336-344.
    6. Chen Shi & Yujiao Xian & Zhixin Wang & Ke Wang, 2023. "Marginal abatement cost curve of carbon emissions in China: a functional data analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-25, February.
    7. Delarue, Erik & Van den Bergh, Kenneth, 2016. "Carbon mitigation in the electric power sector under cap-and-trade and renewables policies," Energy Policy, Elsevier, vol. 92(C), pages 34-44.
    8. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    9. Du, Huibin & Li, Qun & Liu, Xi & Peng, Binbin & Southworth, Frank, 2021. "Costs and potentials of reducing CO2 emissions in China's transport sector: Findings from an energy system analysis," Energy, Elsevier, vol. 234(C).
    10. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
    11. Ashwin K Seshadri, 2017. "Economics of limiting cumulative CO2 emissions," Papers 1706.03502, arXiv.org.
    12. Peng, Bin-Bin & Xu, Jin-Hua & Fan, Ying, 2018. "Modeling uncertainty in estimation of carbon dioxide abatement costs of energy-saving technologies for passenger cars in China," Energy Policy, Elsevier, vol. 113(C), pages 306-319.
    13. Breyer, Christian & Koskinen, Otto & Blechinger, Philipp, 2015. "Profitable climate change mitigation: The case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 610-628.
    14. Koch, Nicolas & Fuss, Sabine & Grosjean, Godefroy & Edenhofer, Ottmar, 2014. "Causes of the EU ETS price drop: Recession, CDM, renewable policies or a bit of everything?—New evidence," Energy Policy, Elsevier, vol. 73(C), pages 676-685.
    15. Jenny Gabriela Peña Balderrama & Thomas Alfstad & Constantinos Taliotis & Mohammad Reza Hesamzadeh & Mark Howells, 2018. "A Sketch of Bolivia’s Potential Low-Carbon Power System Configurations. The Case of Applying Carbon Taxation and Lowering Financing Costs," Energies, MDPI, vol. 11(10), pages 1-20, October.
    16. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    17. Osorio, Sebastian & Pietzcker, Robert C. & Pahle, Michael & Edenhofer, Ottmar, 2020. "How to deal with the risks of phasing out coal in Germany," Energy Economics, Elsevier, vol. 87(C).
    18. Badau, Flavius & Färe, Rolf & Gopinath, Munisamy, 2016. "Global resilience to climate change: Examining global economic and environmental performance resulting from a global carbon dioxide market," Resource and Energy Economics, Elsevier, vol. 45(C), pages 46-64.
    19. Delarue, E.D. & Ellerman, A.D. & D'haeseleer, W.D., 2010. "Robust MACCs? The topography of abatement by fuel switching in the European power sector," Energy, Elsevier, vol. 35(3), pages 1465-1475.
    20. Lehmann, Paul, 2010. "Combining emissions trading and emissions taxes in a multi-objective world," UFZ Discussion Papers 4/2010, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:80:y:2015:i:c:p:88-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.