IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Marginal abatement cost curves and abatement strategies: Taking option interdependency and investments unrelated to climate change into account

Listed author(s):
  • Levihn, F.
  • Nuur, C.
  • Laestadius, S.
Registered author(s):

    Firms usually have optimization tools for evaluating various investment options; policymakers likewise need tools for designing economically efficient policies. One such tool is the MACC (marginal abatement cost curve), used to capture the least-cost sequence of abatement options. Such curves are also used for understanding the implications of government policies for markets and firms. This article explores dynamic path-dependent aspects of the Stockholm district heating system case, in which the performance of some discrete options is conditioned by others. In addition, it proposes adding a feedback loop to handle option redundancy when implementing a sequence of options. Furthermore, in an energy system, actions unrelated to climate change abatement might likewise affect the performance of abatement options. This is discussed together with implications for climate change policy and corporate investment optimization. Our results indicate that a systems approach coupled with a feedback loop could help overcome some of the present methodological limitations.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421400961X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Energy.

    Volume (Year): 76 (2014)
    Issue (Month): C ()
    Pages: 336-344

    as
    in new window

    Handle: RePEc:eee:energy:v:76:y:2014:i:c:p:336-344
    DOI: 10.1016/j.energy.2014.08.025
    Contact details of provider: Web page: http://www.journals.elsevier.com/energy

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Levihn, Fabian, 2014. "CO2 emissions accounting: Whether, how, and when different allocation methods should be used," Energy, Elsevier, vol. 68(C), pages 811-818.
    2. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
    3. Klepper, Gernot & Peterson, Sonja, 2006. "Marginal abatement cost curves in general equilibrium: The influence of world energy prices," Resource and Energy Economics, Elsevier, vol. 28(1), pages 1-23, January.
    4. Yang, Xi & Teng, Fei & Wang, Gehua, 2013. "Incorporating environmental co-benefits into climate policies: A regional study of the cement industry in China," Applied Energy, Elsevier, vol. 112(C), pages 1446-1453.
    5. Ghaderi, A. & Parsa Moghaddam, M. & Sheikh-El-Eslami, M.K., 2014. "Energy efficiency resource modeling in generation expansion planning," Energy, Elsevier, vol. 68(C), pages 529-537.
    6. Komiyama, Ryoichi & Fujii, Yasumasa, 2014. "Assessment of massive integration of photovoltaic system considering rechargeable battery in Japan with high time-resolution optimal power generation mix model," Energy Policy, Elsevier, vol. 66(C), pages 73-89.
    7. Criqui, Patrick & Mima, Silvana & Viguier, Laurent, 1999. "Marginal abatement costs of CO2 emission reductions, geographical flexibility and concrete ceilings: an assessment using the POLES model," Energy Policy, Elsevier, vol. 27(10), pages 585-601, October.
    8. Bernier, Etienne & Maréchal, François & Samson, Réjean, 2012. "Optimal greenhouse gas emissions in NGCC plants integrating life cycle assessment," Energy, Elsevier, vol. 37(1), pages 639-648.
    9. Flachsland, Christian & Brunner, Steffen & Edenhofer, Ottmar & Creutzig, Felix, 2011. "Climate policies for road transport revisited (II): Closing the policy gap with cap-and-trade," Energy Policy, Elsevier, vol. 39(4), pages 2100-2110, April.
    10. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    11. de Melo, Conrado Augustus & Jannuzzi, Gilberto de Martino & Ferreira Tripodi, Aline, 2013. "Evaluating public policy mechanisms for climate change mitigation in Brazilian buildings sector," Energy Policy, Elsevier, vol. 61(C), pages 1200-1211.
    12. Kok, Robert & Annema, Jan Anne & van Wee, Bert, 2011. "Cost-effectiveness of greenhouse gas mitigation in transport: A review of methodological approaches and their impact," Energy Policy, Elsevier, vol. 39(12), pages 7776-7793.
    13. Stankeviciute, Loreta & Kitous, Alban & Criqui, Patrick, 2008. "The fundamentals of the future international emissions trading system," Energy Policy, Elsevier, vol. 36(11), pages 4272-4286, November.
    14. Egeskog, Andrea & Hansson, Julia & Berndes, Göran & Werner, Sven, 2009. "Co-generation of biofuels for transportation and heat for district heating systems--an assessment of the national possibilities in the EU," Energy Policy, Elsevier, vol. 37(12), pages 5260-5272, December.
    15. Wada, Kenichi & Akimoto, Keigo & Sano, Fuminori & Oda, Junichiro & Homma, Takashi, 2012. "Energy efficiency opportunities in the residential sector and their feasibility," Energy, Elsevier, vol. 48(1), pages 5-10.
    16. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    17. AydIn, Levent & Acar, Mustafa, 2010. "Economic and environmental implications of Turkish accession to the European Union: A CGE analysis," Energy Policy, Elsevier, vol. 38(11), pages 7031-7040, November.
    18. Meier, Alan & Rosenfeld, Arthur H. & Wright, Janice, 1982. "Supply curves of conserved energy for California's residential sector," Energy, Elsevier, vol. 7(4), pages 347-358.
    19. Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
    20. Strachan, Neil & Pye, Steve & Kannan, Ramachandran, 2009. "The iterative contribution and relevance of modelling to UK energy policy," Energy Policy, Elsevier, vol. 37(3), pages 850-860, March.
    21. Steven E. Stoft, 1995. "The Economics of Conserved-Energy "Supply" Curves," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 109-137.
    22. Vijay, Samudra & DeCarolis, Joseph F. & Srivastava, Ravi K., 2010. "A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers," Energy Policy, Elsevier, vol. 38(5), pages 2255-2261, May.
    23. Brunke, Jean-Christian & Blesl, Markus, 2014. "A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry," Energy Policy, Elsevier, vol. 67(C), pages 431-446.
    24. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
    25. McKitrick, Ross, 1999. "A Derivation of the Marginal Abatement Cost Curve," Journal of Environmental Economics and Management, Elsevier, vol. 37(3), pages 306-314, May.
    26. Knutsson, David & Sahlin, Jenny & Werner, Sven & Ekvall, Tomas & Ahlgren, Erik O., 2006. "HEATSPOT—a simulation tool for national district heating analyses," Energy, Elsevier, vol. 31(2), pages 278-293.
    27. Delarue, E.D. & Ellerman, A.D. & D'haeseleer, W.D., 2010. "Robust MACCs? The topography of abatement by fuel switching in the European power sector," Energy, Elsevier, vol. 35(3), pages 1465-1475.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:76:y:2014:i:c:p:336-344. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.