IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v37y2012i1p639-648.html
   My bibliography  Save this article

Optimal greenhouse gas emissions in NGCC plants integrating life cycle assessment

Author

Listed:
  • Bernier, Etienne
  • Maréchal, François
  • Samson, Réjean

Abstract

The optimal design of an energy-intensive process involves a compromise between costs and greenhouse gas emissions, complicated by the interaction between optimal process emissions and supply chain emissions. We propose a method that combines generic abatement cost estimates and the results of existing (LCA) life cycle assessment studies, so that supply chain emissions are properly handled during optimization. This method is illustrated for a (NGCC) natural gas combined cycle power plant model with the following design and procurement options: procurement of natural gas from low-emissions producers, fuel substitution with (SNG) synthetic natural gas from wood, and variable-rate CO2 capture and sequestration from both the NGCC and SNG plants. Using multi-objective optimization, we show two Pareto-optimal sets with and without the proposed LCA method. The latter can then be shown to misestimate CO2 abatement costs by a few percent, penalizing alternate fuels and energy-efficient process configurations and leading to sub-optimal design decisions with potential net losses of the order of $1/MWh. Thus, the proposed LCA method can enhance the economic analysis of emissions abatement technologies and emissions legislation in general.

Suggested Citation

  • Bernier, Etienne & Maréchal, François & Samson, Réjean, 2012. "Optimal greenhouse gas emissions in NGCC plants integrating life cycle assessment," Energy, Elsevier, vol. 37(1), pages 639-648.
  • Handle: RePEc:eee:energy:v:37:y:2012:i:1:p:639-648
    DOI: 10.1016/j.energy.2011.10.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211006967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.10.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernier, Etienne & Maréchal, François & Samson, Réjean, 2010. "Multi-objective design optimization of a natural gas-combined cycle with carbon dioxide capture in a life cycle perspective," Energy, Elsevier, vol. 35(2), pages 1121-1128.
    2. Li, Hongtao & Maréchal, François & Burer, Meinrad & Favrat, Daniel, 2006. "Multi-objective optimization of an advanced combined cycle power plant including CO2 separation options," Energy, Elsevier, vol. 31(15), pages 3117-3134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi, Qun & Feng, Jie & Wu, Yanli & Li, Wenying, 2014. "3E (energy, environmental, and economy) evaluation and assessment to an innovative dual-gas polygeneration system," Energy, Elsevier, vol. 66(C), pages 285-294.
    2. Levihn, F. & Nuur, C. & Laestadius, S., 2014. "Marginal abatement cost curves and abatement strategies: Taking option interdependency and investments unrelated to climate change into account," Energy, Elsevier, vol. 76(C), pages 336-344.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teichgraeber, Holger & Brodrick, Philip G. & Brandt, Adam R., 2017. "Optimal design and operations of a flexible oxyfuel natural gas plant," Energy, Elsevier, vol. 141(C), pages 506-518.
    2. Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2010. "A systematic tool for the minimization of the life cycle impact of solar assisted absorption cooling systems," Energy, Elsevier, vol. 35(9), pages 3849-3862.
    3. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    4. Bentsen, Niclas Scott & Jack, Michael W. & Felby, Claus & Thorsen, Bo Jellesmark, 2014. "Allocation of biomass resources for minimising energy system greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 506-515.
    5. Fazlollahi, Samira & Mandel, Pierre & Becker, Gwenaelle & Maréchal, Francois, 2012. "Methods for multi-objective investment and operating optimization of complex energy systems," Energy, Elsevier, vol. 45(1), pages 12-22.
    6. Bernier, Etienne & Maréchal, François & Samson, Réjean, 2010. "Multi-objective design optimization of a natural gas-combined cycle with carbon dioxide capture in a life cycle perspective," Energy, Elsevier, vol. 35(2), pages 1121-1128.
    7. Li, Hongtao & Marechal, Francois & Favrat, Daniel, 2010. "Power and cogeneration technology environomic performance typification in the context of CO2 abatement part I: Power generation," Energy, Elsevier, vol. 35(8), pages 3143-3154.
    8. Zhang, Di & Evangelisti, Sara & Lettieri, Paola & Papageorgiou, Lazaros G., 2015. "Optimal design of CHP-based microgrids: Multiobjective optimisation and life cycle assessment," Energy, Elsevier, vol. 85(C), pages 181-193.
    9. Mores, Patricia & Scenna, Nicolás & Mussati, Sergio, 2012. "CO2 capture using monoethanolamine (MEA) aqueous solution: Modeling and optimization of the solvent regeneration and CO2 desorption process," Energy, Elsevier, vol. 45(1), pages 1042-1058.
    10. Carvalho, Monica & Lozano, Miguel A. & Serra, Luis M., 2012. "Multicriteria synthesis of trigeneration systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 91(1), pages 245-254.
    11. Gebreslassie, Berhane H. & Groll, Eckhard A. & Garimella, Suresh V., 2012. "Multi-objective optimization of sustainable single-effect water/Lithium Bromide absorption cycle," Renewable Energy, Elsevier, vol. 46(C), pages 100-110.
    12. Valiani, Saba & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Optimization of pre-combustion capture for thermal power plants using Pinch Analysis," Energy, Elsevier, vol. 119(C), pages 950-960.
    13. Toffolo, Andrea & Lazzaretto, Andrea & Morandin, Matteo, 2010. "The HEATSEP method for the synthesis of thermal systems: An application to the S-Graz cycle," Energy, Elsevier, vol. 35(2), pages 976-981.
    14. Toffolo, Andrea & Lazzaretto, Andrea & von Spakovsky, Michael R., 2012. "On the nature of the heat transfer feasibility constraint in the optimal synthesis/design of complex energy systems," Energy, Elsevier, vol. 41(1), pages 236-243.
    15. Palander, Teijo, 2011. "Technical and economic analysis of electricity generation from forest, fossil, and wood-waste fuels in a Finnish heating plant," Energy, Elsevier, vol. 36(9), pages 5579-5590.
    16. Tock, Laurence & Maréchal, François, 2012. "Co-production of hydrogen and electricity from lignocellulosic biomass: Process design and thermo-economic optimization," Energy, Elsevier, vol. 45(1), pages 339-349.
    17. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    18. Abadie, Luis M. & Chamorro, José M., 2008. "European CO2 prices and carbon capture investments," Energy Economics, Elsevier, vol. 30(6), pages 2992-3015, November.
    19. Palander, Teijo & Voutilainen, Juuso, 2013. "A decision support system for optimal storing and supply of wood in a Finnish CHP plant," Renewable Energy, Elsevier, vol. 52(C), pages 88-94.
    20. Antipova, Ekaterina & Boer, Dieter & Cabeza, Luisa F. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano, 2013. "Uncovering relationships between environmental metrics in the multi-objective optimization of energy systems: A case study of a thermal solar Rankine reverse osmosis desalination plant," Energy, Elsevier, vol. 51(C), pages 50-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:37:y:2012:i:1:p:639-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.