IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i15p3117-3134.html
   My bibliography  Save this article

Multi-objective optimization of an advanced combined cycle power plant including CO2 separation options

Author

Listed:
  • Li, Hongtao
  • Maréchal, François
  • Burer, Meinrad
  • Favrat, Daniel

Abstract

This paper illustrates a methodology developed to facilitate the analysis of complex systems characterized by a large number of technical, economical and environmental parameters. Thermo-economic modeling of a natural gas combined cycle including CO2 separation options has been coupled within a multi-objective evolutionary algorithm to characterize the economic and environmental performances of such complex systems within various contexts.

Suggested Citation

  • Li, Hongtao & Maréchal, François & Burer, Meinrad & Favrat, Daniel, 2006. "Multi-objective optimization of an advanced combined cycle power plant including CO2 separation options," Energy, Elsevier, vol. 31(15), pages 3117-3134.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:15:p:3117-3134
    DOI: 10.1016/j.energy.2006.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206000673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hongtao & Burer, Meinrad & Song, Zhi-Ping & Favrat, Daniel & Marechal, Francois, 2004. "Green heating system: characteristics and illustration with multi-criteria optimization of an integrated energy system," Energy, Elsevier, vol. 29(2), pages 225-244.
    2. Burer, M. & Tanaka, K. & Favrat, D. & Yamada, K., 2003. "Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers," Energy, Elsevier, vol. 28(6), pages 497-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hongtao & Marechal, Francois & Favrat, Daniel, 2010. "Power and cogeneration technology environomic performance typification in the context of CO2 abatement part I: Power generation," Energy, Elsevier, vol. 35(8), pages 3143-3154.
    2. Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2010. "A systematic tool for the minimization of the life cycle impact of solar assisted absorption cooling systems," Energy, Elsevier, vol. 35(9), pages 3849-3862.
    3. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    4. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    5. Palander, Teijo & Voutilainen, Juuso, 2013. "A decision support system for optimal storing and supply of wood in a Finnish CHP plant," Renewable Energy, Elsevier, vol. 52(C), pages 88-94.
    6. Fazlollahi, Samira & Mandel, Pierre & Becker, Gwenaelle & Maréchal, Francois, 2012. "Methods for multi-objective investment and operating optimization of complex energy systems," Energy, Elsevier, vol. 45(1), pages 12-22.
    7. Toffolo, Andrea & Lazzaretto, Andrea & Morandin, Matteo, 2010. "The HEATSEP method for the synthesis of thermal systems: An application to the S-Graz cycle," Energy, Elsevier, vol. 35(2), pages 976-981.
    8. Palander, Teijo, 2011. "Technical and economic analysis of electricity generation from forest, fossil, and wood-waste fuels in a Finnish heating plant," Energy, Elsevier, vol. 36(9), pages 5579-5590.
    9. Teichgraeber, Holger & Brodrick, Philip G. & Brandt, Adam R., 2017. "Optimal design and operations of a flexible oxyfuel natural gas plant," Energy, Elsevier, vol. 141(C), pages 506-518.
    10. Bernier, Etienne & Maréchal, François & Samson, Réjean, 2012. "Optimal greenhouse gas emissions in NGCC plants integrating life cycle assessment," Energy, Elsevier, vol. 37(1), pages 639-648.
    11. Bernier, Etienne & Maréchal, François & Samson, Réjean, 2010. "Multi-objective design optimization of a natural gas-combined cycle with carbon dioxide capture in a life cycle perspective," Energy, Elsevier, vol. 35(2), pages 1121-1128.
    12. Abadie, Luis M. & Chamorro, José M., 2008. "European CO2 prices and carbon capture investments," Energy Economics, Elsevier, vol. 30(6), pages 2992-3015, November.
    13. Carvalho, Monica & Lozano, Miguel A. & Serra, Luis M., 2012. "Multicriteria synthesis of trigeneration systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 91(1), pages 245-254.
    14. Palander, Teijo, 2011. "Modelling renewable supply chain for electricity generation with forest, fossil, and wood-waste fuels," Energy, Elsevier, vol. 36(10), pages 5984-5993.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hongtao & Marechal, Francois & Favrat, Daniel, 2010. "Power and cogeneration technology environomic performance typification in the context of CO2 abatement part I: Power generation," Energy, Elsevier, vol. 35(8), pages 3143-3154.
    2. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    3. Schiffmann, J. & Favrat, D., 2010. "Design, experimental investigation and multi-objective optimization of a small-scale radial compressor for heat pump applications," Energy, Elsevier, vol. 35(1), pages 436-450.
    4. Costa, Andrea & Bakhtiari, Bahador & Schuster, Sebastian & Paris, Jean, 2009. "Integration of absorption heat pumps in a Kraft pulp process for enhanced energy efficiency," Energy, Elsevier, vol. 34(3), pages 254-260.
    5. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    6. Komatsu, Y. & Kimijima, S. & Szmyd, J.S., 2010. "Performance analysis for the part-load operation of a solid oxide fuel cell–micro gas turbine hybrid system," Energy, Elsevier, vol. 35(2), pages 982-988.
    7. Mavrotas, George & Diakoulaki, Danae & Florios, Kostas & Georgiou, Paraskevas, 2008. "A mathematical programming framework for energy planning in services' sector buildings under uncertainty in load demand: The case of a hospital in Athens," Energy Policy, Elsevier, vol. 36(7), pages 2415-2429, July.
    8. N. N. Novitsky & A. V. Lutsenko, 2016. "Discrete-continuous optimization of heat network operating conditions in parallel operation of similar pumps at pumping stations," Journal of Global Optimization, Springer, vol. 66(1), pages 83-94, September.
    9. Li, HongQiang & Kang, ShuShuo & Yu, Zhun & Cai, Bo & Zhang, GuoQiang, 2014. "A feasible system integrating combined heating and power system with ground-source heat pump," Energy, Elsevier, vol. 74(C), pages 240-247.
    10. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    11. Zmeureanu, Radu & Yu Wu, Xin, 2007. "Energy and exergy performance of residential heating systems with separate mechanical ventilation," Energy, Elsevier, vol. 32(3), pages 187-195.
    12. Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.
    13. Chitsaz, Ata & Hosseinpour, Javad & Assadi, Mohsen, 2017. "Effect of recycling on the thermodynamic and thermoeconomic performances of SOFC based on trigeneration systems; A comparative study," Energy, Elsevier, vol. 124(C), pages 613-624.
    14. Zabala, Laura & Febres, Jesus & Sterling, Raymond & López, Susana & Keane, Marcus, 2020. "Virtual testbed for model predictive control development in district cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    15. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    16. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    17. Chen, Zhang & Yiliang, Xie & Hongxia, Zhang & Yujie, Gu & Xiongwen, Zhang, 2023. "Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system," Energy, Elsevier, vol. 262(PA).
    18. Wei, Dajun & Chen, Alian & Sun, Bo & Zhang, Chenghui, 2016. "Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system," Energy, Elsevier, vol. 98(C), pages 296-307.
    19. Guelpa, Elisa & Marincioni, Ludovica & Verda, Vittorio, 2019. "Towards 4th generation district heating: Prediction of building thermal load for optimal management," Energy, Elsevier, vol. 171(C), pages 510-522.
    20. Mavrotas, George & Florios, Kostas & Vlachou, Dimitra, 2010. "Energy planning of a hospital using Mathematical Programming and Monte Carlo simulation for dealing with uncertainty in the economic parameters," MPRA Paper 105754, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:15:p:3117-3134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.