IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v47y2012i1p150-157.html
   My bibliography  Save this article

Optimal design and operation of a biogas fuelled MCFC (molten carbonate fuel cells) system integrated with an anaerobic digester

Author

Listed:
  • Verda, Vittorio
  • Sciacovelli, Adriano

Abstract

In this paper, a biogas fuelled hybrid system, obtained by integrating a molten carbonate fuel cell with a micro-turbine is considered. The size of the plant is selected on the basis of the maximum biogas production registered by monitoring the annual operation of an anaerobic digestion plant. The system produces electricity and supplies heat to the digester. Heat is necessary to keep correct operating temperature of the bacteria.

Suggested Citation

  • Verda, Vittorio & Sciacovelli, Adriano, 2012. "Optimal design and operation of a biogas fuelled MCFC (molten carbonate fuel cells) system integrated with an anaerobic digester," Energy, Elsevier, vol. 47(1), pages 150-157.
  • Handle: RePEc:eee:energy:v:47:y:2012:i:1:p:150-157
    DOI: 10.1016/j.energy.2012.09.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212007396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.09.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calise, F. & Dentice d’ Accadia, M. & Vanoli, L. & von Spakovsky, Michael R., 2007. "Full load synthesis/design optimization of a hybrid SOFC–GT power plant," Energy, Elsevier, vol. 32(4), pages 446-458.
    2. Facchinetti, Emanuele & Gassner, Martin & D’Amelio, Matilde & Marechal, François & Favrat, Daniel, 2012. "Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass," Energy, Elsevier, vol. 41(1), pages 408-419.
    3. Falcucci, G. & Jannelli, E. & Minutillo, M. & Ubertini, S. & Han, J. & Yoon, S.P. & Nam, S.W., 2012. "Integrated numerical and experimental study of a MCFC-plasma gasifier energy system," Applied Energy, Elsevier, vol. 97(C), pages 734-742.
    4. Nicolin, Flavio & Verda, Vittorio, 2011. "Lifetime optimization of a molten carbonate fuel cell power system coupled with hydrogen production," Energy, Elsevier, vol. 36(4), pages 2235-2241.
    5. Bang-Møller, C. & Rokni, M. & Elmegaard, B., 2011. "Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system," Energy, Elsevier, vol. 36(8), pages 4740-4752.
    6. Burer, M. & Tanaka, K. & Favrat, D. & Yamada, K., 2003. "Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers," Energy, Elsevier, vol. 28(6), pages 497-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Liwei & Zhang, Houcheng & Gao, Songhua & Yan, Huixian, 2014. "Performance optimum analysis of an irreversible molten carbonate fuel cell–Stirling heat engine hybrid system," Energy, Elsevier, vol. 64(C), pages 923-930.
    2. Rasi, S. & Seppälä, M. & Rintala, J., 2013. "Organic silicon compounds in biogases produced from grass silage, grass and maize in laboratory batch assays," Energy, Elsevier, vol. 52(C), pages 137-142.
    3. Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele & Palombo, Adolfo, 2015. "Molten carbonate fuel cell: An experimental analysis of a 1kW system fed by landfill gas," Applied Energy, Elsevier, vol. 140(C), pages 146-160.
    4. Ombretta Paladino, 2022. "Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    5. Hongyu Huang & Jun Li & Zhaohong He & Tao Zeng & Noriyuki Kobayashi & Mitsuhiro Kubota, 2015. "Performance Analysis of a MCFC/MGT Hybrid Power System Bi-Fueled by City Gas and Biogas," Energies, MDPI, vol. 8(6), pages 1-17, June.
    6. Szczęśniak, Arkadiusz & Milewski, Jarosław & Szabłowski, Łukasz & Bujalski, Wojciech & Dybiński, Olaf, 2020. "Dynamic model of a molten carbonate fuel cell 1 kW stack," Energy, Elsevier, vol. 200(C).
    7. Eom, Seongyong & Ahn, Seongyool & Rhie, Younghoon & Kang, Kijoong & Sung, Yonmo & Moon, Cheoreon & Choi, Gyungmin & Kim, Duckjool, 2014. "Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon fuel cell) system," Energy, Elsevier, vol. 74(C), pages 734-740.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    2. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    3. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    4. Rokni, Masoud, 2013. "Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels," Energy, Elsevier, vol. 61(C), pages 87-97.
    5. Mehrpooya, Mehdi, 2016. "Conceptual design and energy analysis of novel integrated liquefied natural gas and fuel cell electrochemical power plant processes," Energy, Elsevier, vol. 111(C), pages 468-483.
    6. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    7. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
    8. Lv, Xiaojing & Liu, Xing & Gu, Chenghong & Weng, Yiwu, 2016. "Determination of safe operation zone for an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system," Energy, Elsevier, vol. 99(C), pages 91-102.
    9. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    10. Amedi, Hamid Reza & Bazooyar, Bahamin & Pishvaie, Mahmoud Reza, 2015. "Control of anode supported SOFCs (solid oxide fuel cells): Part I. mathematical modeling and state estimation within one cell," Energy, Elsevier, vol. 90(P1), pages 605-621.
    11. Bakalis, Diamantis P. & Stamatis, Anastassios G., 2014. "Optimization methodology of turbomachines for hybrid SOFC–GT applications," Energy, Elsevier, vol. 70(C), pages 86-94.
    12. Santhanam, S. & Schilt, C. & Turker, B. & Woudstra, T. & Aravind, P.V., 2016. "Thermodynamic modeling and evaluation of high efficiency heat pipe integrated biomass Gasifier–Solid Oxide Fuel Cells–Gas Turbine systems," Energy, Elsevier, vol. 109(C), pages 751-764.
    13. Mazzucco, Andrea & Rokni, Masoud, 2014. "Thermo-economic analysis of a solid oxide fuel cell and steam injected gas turbine plant integrated with woodchips gasification," Energy, Elsevier, vol. 76(C), pages 114-129.
    14. Lv, Xiaojing & Lu, Chaohao & Wang, Yuzhang & Weng, Yiwu, 2015. "Effect of operating parameters on a hybrid system of intermediate-temperature solid oxide fuel cell and gas turbine," Energy, Elsevier, vol. 91(C), pages 10-19.
    15. Park, K. & Hwang, H.K., 2013. "Fabrication and electrical properties of nanocrystalline Dy3+-doped CeO2 for intermediate-temperature solid oxide fuel cells," Energy, Elsevier, vol. 55(C), pages 304-309.
    16. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    17. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.
    18. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    19. Schiffmann, J. & Favrat, D., 2010. "Design, experimental investigation and multi-objective optimization of a small-scale radial compressor for heat pump applications," Energy, Elsevier, vol. 35(1), pages 436-450.
    20. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Towards net-zero emission cement and power production using Molten Carbonate Fuel Cells," Applied Energy, Elsevier, vol. 306(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:47:y:2012:i:1:p:150-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.