IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp304-309.html
   My bibliography  Save this article

Fabrication and electrical properties of nanocrystalline Dy3+-doped CeO2 for intermediate-temperature solid oxide fuel cells

Author

Listed:
  • Park, K.
  • Hwang, H.K.

Abstract

High-quality nano-sized Ce0.8Dy0.2O2−δ powders were synthesized by the solution combustion method, using C4H7NO4 (aspartic acid) as the combustion fuel. The nano-sized Ce0.8Dy0.2O2−δ powders provided an ultra-fine grain size and high density even at low sintering temperatures (1250–1400 °C), engendering high electrical conductivity. The magnitude of electrical conductivity depended strongly on the sintering temperature and followed the order of 1350 °C > 1300 °C > 1250 °C > 1400 °C. The electrical conductivity of the Ce0.8Dy0.2O2−δ sintered at 1350 °C was 0.206 S cm−1 at 800 °C. The high electrical conductivity can lower operating temperature of solid oxide fuel cells. We demonstrate that synthesizing nano-sized powders and controlling grain size are important for enhanced Ce0.8Dy0.2O2−δ electrolytes.

Suggested Citation

  • Park, K. & Hwang, H.K., 2013. "Fabrication and electrical properties of nanocrystalline Dy3+-doped CeO2 for intermediate-temperature solid oxide fuel cells," Energy, Elsevier, vol. 55(C), pages 304-309.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:304-309
    DOI: 10.1016/j.energy.2013.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213003198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wakui, Tetsuya & Yokoyama, Ryohei & Shimizu, Ken-ichi, 2010. "Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems," Energy, Elsevier, vol. 35(2), pages 740-750.
    2. Jia, Junxi & Li, Qiang & Luo, Ming & Wei, Liming & Abudula, Abuliti, 2011. "Effects of gas recycle on performance of solid oxide fuel cell power systems," Energy, Elsevier, vol. 36(2), pages 1068-1075.
    3. Facchinetti, Emanuele & Gassner, Martin & D’Amelio, Matilde & Marechal, François & Favrat, Daniel, 2012. "Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass," Energy, Elsevier, vol. 41(1), pages 408-419.
    4. Bunin, Gene A. & Wuillemin, Zacharie & François, Grégory & Nakajo, Arata & Tsikonis, Leonidas & Bonvin, Dominique, 2012. "Experimental real-time optimization of a solid oxide fuel cell stack via constraint adaptation," Energy, Elsevier, vol. 39(1), pages 54-62.
    5. Liso, Vincenzo & Olesen, Anders Christian & Nielsen, Mads Pagh & Kær, Søren Knudsen, 2011. "Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system," Energy, Elsevier, vol. 36(7), pages 4216-4226.
    6. Komatsu, Y. & Kimijima, S. & Szmyd, J.S., 2010. "Performance analysis for the part-load operation of a solid oxide fuel cell–micro gas turbine hybrid system," Energy, Elsevier, vol. 35(2), pages 982-988.
    7. Wakui, Tetsuya & Yokoyama, Ryohei, 2012. "Optimal sizing of residential SOFC cogeneration system for power interchange operation in housing complex from energy-saving viewpoint," Energy, Elsevier, vol. 41(1), pages 65-74.
    8. Santin, Marco & Traverso, Alberto & Magistri, Loredana & Massardo, Aristide, 2010. "Thermoeconomic analysis of SOFC-GT hybrid systems fed by liquid fuels," Energy, Elsevier, vol. 35(2), pages 1077-1083.
    9. Bang-Møller, C. & Rokni, M. & Elmegaard, B., 2011. "Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system," Energy, Elsevier, vol. 36(8), pages 4740-4752.
    10. Rokni, Masoud, 2010. "Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle," Energy, Elsevier, vol. 35(12), pages 4691-4699.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamboli, Ashif H. & Chaugule, Avinash A. & Sheikh, Faheem A. & Chung, Wook-Jin & Kim, Hern, 2015. "Synthesis and application of CeO2–NiO loaded TiO2 nanofiber as novel catalyst for hydrogen production from sodium borohydride hydrolysis," Energy, Elsevier, vol. 89(C), pages 568-575.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    2. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    3. Rokni, Masoud, 2013. "Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels," Energy, Elsevier, vol. 61(C), pages 87-97.
    4. Lv, Xiaojing & Lu, Chaohao & Wang, Yuzhang & Weng, Yiwu, 2015. "Effect of operating parameters on a hybrid system of intermediate-temperature solid oxide fuel cell and gas turbine," Energy, Elsevier, vol. 91(C), pages 10-19.
    5. Chang, Ikwhang & Bae, Jiwoong & Park, Joonho & Lee, Sunho & Ban, Myeongseok & Park, Taehyun & Lee, Yoon Ho & Song, Han Ho & Kim, Young-Beom & Cha, Suk Won, 2016. "A thermally self-sustaining solid oxide fuel cell system at ultra-low operating temperature (319 °C)," Energy, Elsevier, vol. 104(C), pages 107-113.
    6. Hajimolana, S.A. & Tonekabonimoghadam, S.M. & Hussain, M.A. & Chakrabarti, M.H. & Jayakumar, N.S. & Hashim, M.A., 2013. "Thermal stress management of a solid oxide fuel cell using neural network predictive control," Energy, Elsevier, vol. 62(C), pages 320-329.
    7. Xenos, Dionysios P. & Hofmann, Philipp & Panopoulos, Kyriakos D. & Kakaras, Emmanuel, 2015. "Detailed transient thermal simulation of a planar SOFC (solid oxide fuel cell) using gPROMS™," Energy, Elsevier, vol. 81(C), pages 84-102.
    8. Lv, Xiaojing & Liu, Xing & Gu, Chenghong & Weng, Yiwu, 2016. "Determination of safe operation zone for an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system," Energy, Elsevier, vol. 99(C), pages 91-102.
    9. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    10. Mazzucco, Andrea & Rokni, Masoud, 2014. "Thermo-economic analysis of a solid oxide fuel cell and steam injected gas turbine plant integrated with woodchips gasification," Energy, Elsevier, vol. 76(C), pages 114-129.
    11. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.
    12. Rokni, Masoud, 2014. "Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine," Energy, Elsevier, vol. 76(C), pages 19-31.
    13. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    14. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    15. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    16. Saebea, Dang & Authayanun, Suthida & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2016. "Effect of anode–cathode exhaust gas recirculation on energy recuperation in a solid oxide fuel cell-gas turbine hybrid power system," Energy, Elsevier, vol. 94(C), pages 218-232.
    17. Saebea, Dang & Magistri, Loredana & Massardo, Aristide & Arpornwichanop, Amornchai, 2017. "Cycle analysis of solid oxide fuel cell-gas turbine hybrid systems integrated ethanol steam reformer: Energy management," Energy, Elsevier, vol. 127(C), pages 743-755.
    18. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    19. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    20. Wang, Yuan & Cai, Ling & Liu, Tie & Wang, Junyi & Chen, Jincan, 2015. "An efficient strategy exploiting the waste heat in a solid oxide fuel cell system," Energy, Elsevier, vol. 93(P1), pages 900-907.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:304-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.