IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222023350.html
   My bibliography  Save this article

Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system

Author

Listed:
  • Chen, Zhang
  • Yiliang, Xie
  • Hongxia, Zhang
  • Yujie, Gu
  • Xiongwen, Zhang

Abstract

Incorporating solar energy technologies into integrated energy systems (IES) plays an increasingly important role to mitigate energy supply shortages and climate challenges. However, the low efficiency of solar energy utilization and land limitation for system deployment greatly restrict the development of the solar powered IESs. In this paper, a solar powered electricity, heating and hydrogen IES based on photovoltaic (PV), photothermal (PT) and photocatalysis of hydrogen production (PH) is proposed and investigated. The system comprises solar radiation spectrum splitting technology, PV, PT, PH, electric heating device, compressive heat pump, solid oxide fuel cell, absorption heat pump and energy storage components. A component sizing method based on a region contraction algorithm is employed to find the system optimal design with minimizing the cost of energy. Two scenarios of the solar powered IES based on solar spectrum splitting unit and independent energy supply unit are analyzed and compared. The results show that the solar powered IES can completely meet the electricity, heating and hydrogen energy demands and achieve cost savings for consumers. Compared to independent energy supply unit-based IES, the use of solar spectrum splitting unit can significantly improve the total energy efficiency by 21.74% and reduce the land area for solar capture by 52.5%, but increase the cost of energy by 27.3%.

Suggested Citation

  • Chen, Zhang & Yiliang, Xie & Hongxia, Zhang & Yujie, Gu & Xiongwen, Zhang, 2023. "Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023350
    DOI: 10.1016/j.energy.2022.125453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Khori, Khalid & Bicer, Yusuf & Koç, Muammer, 2021. "Comparative techno-economic assessment of integrated PV-SOFC and PV-Battery hybrid system for natural gas processing plants," Energy, Elsevier, vol. 222(C).
    2. Zhang, Xiongwen & Tan, Siew-Chong & Li, Guojun & Li, Jun & Feng, Zhenping, 2013. "Components sizing of hybrid energy systems via the optimization of power dispatch simulations," Energy, Elsevier, vol. 52(C), pages 165-172.
    3. Beccali, M. & Brunone, S. & Cellura, M. & Franzitta, V., 2008. "Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings," Renewable Energy, Elsevier, vol. 33(3), pages 366-382.
    4. Zeng, Zheng & Zhao, Rongxiang & Yang, Huan & Tang, Shengqing, 2014. "Policies and demonstrations of micro-grids in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 701-718.
    5. Adefarati, T. & Bansal, R.C. & Bettayeb, M. & Naidoo, R., 2021. "Optimal energy management of a PV-WTG-BSS-DG microgrid system," Energy, Elsevier, vol. 217(C).
    6. Xi, Yufei & Fang, Jiakun & Chen, Zhe & Zeng, Qing & Lund, Henrik, 2021. "Optimal coordination of flexible resources in the gas-heat-electricity integrated energy system," Energy, Elsevier, vol. 223(C).
    7. Bicer, Yusuf & Sprotte, André Felipe Vitorio & Dincer, Ibrahim, 2017. "Concentrated solar light splitting using cold mirrors for photovoltaics and photonic hydrogen production applications," Applied Energy, Elsevier, vol. 197(C), pages 169-182.
    8. Yang, G. & Zhai, X.Q., 2019. "Optimal design and performance analysis of solar hybrid CCHP system considering influence of building type and climate condition," Energy, Elsevier, vol. 174(C), pages 647-663.
    9. Zhang, Xiongwen, 2014. "A statistical approach for sub-hourly solar radiation reconstruction," Renewable Energy, Elsevier, vol. 71(C), pages 307-314.
    10. Chauhan, Anurag & Saini, R.P., 2017. "Size optimization and demand response of a stand-alone integrated renewable energy system," Energy, Elsevier, vol. 124(C), pages 59-73.
    11. Wang, Gang & Yao, Yubo & Chen, Zeshao & Hu, Peng, 2019. "Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology," Energy, Elsevier, vol. 166(C), pages 256-266.
    12. Cao, Fei & Wei, Qingyu & Liu, Huan & Lu, Na & Zhao, Liang & Guo, Liejin, 2018. "Development of the direct solar photocatalytic water splitting system for hydrogen production in Northwest China: Design and evaluation of photoreactor," Renewable Energy, Elsevier, vol. 121(C), pages 153-163.
    13. Wang, Kai & Herrando, María & Pantaleo, Antonio M. & Markides, Christos N., 2019. "Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres," Applied Energy, Elsevier, vol. 254(C).
    14. Roth, Ian F. & Ambs, Lawrence L., 2004. "Incorporating externalities into a full cost approach to electric power generation life-cycle costing," Energy, Elsevier, vol. 29(12), pages 2125-2144.
    15. Ju, Xing & Xu, Chao & Han, Xue & Du, Xiaoze & Wei, Gaosheng & Yang, Yongping, 2017. "A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology," Applied Energy, Elsevier, vol. 187(C), pages 534-563.
    16. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    17. Burer, M. & Tanaka, K. & Favrat, D. & Yamada, K., 2003. "Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers," Energy, Elsevier, vol. 28(6), pages 497-518.
    18. Azaza, Maher & Wallin, Fredrik, 2017. "Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden," Energy, Elsevier, vol. 123(C), pages 108-118.
    19. Starke, Allan R. & Cardemil, José M. & Escobar, Rodrigo & Colle, Sergio, 2018. "Multi-objective optimization of hybrid CSP+PV system using genetic algorithm," Energy, Elsevier, vol. 147(C), pages 490-503.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Wen-Lih & Currao, Gaetano & Li, Yueh-Heng & Kao, Chien-Chun, 2023. "Employing Taguchi method to optimize the performance of a microscale combined heat and power system with Stirling engine and thermophotovoltaic array," Energy, Elsevier, vol. 270(C).
    2. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    2. Zhu, Yizhou & Ma, Benchi & Zeng, Zilong & Lou, Hewei & He, Yi & Jing, Dengwei, 2022. "Solar collector tube as secondary concentrator for significantly enhanced optical performance of LCPV/T system," Renewable Energy, Elsevier, vol. 193(C), pages 418-433.
    3. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    4. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    5. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    6. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India," Energy, Elsevier, vol. 94(C), pages 138-156.
    7. Qu, Wanjun & Xing, Xueli & Cao, Yali & Liu, Taixiu & Hong, Hui & Jin, Hongguang, 2020. "A concentrating solar power system integrated photovoltaic and mid-temperature solar thermochemical processes," Applied Energy, Elsevier, vol. 262(C).
    8. Wang, Gang & Wang, Fasi & Shen, Fan & Chen, Zeshao & Hu, Peng, 2019. "Novel design and thermodynamic analysis of a solar concentration PV and thermal combined system based on compact linear Fresnel reflector," Energy, Elsevier, vol. 180(C), pages 133-148.
    9. Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2019. "A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel," Applied Energy, Elsevier, vol. 248(C), pages 162-173.
    10. Lu, Kegui & Yu, Qiongwan & Zhao, Bin & Pei, Gang, 2023. "Performance analysis of a novel PV/T hybrid system based on spectral beam splitting," Renewable Energy, Elsevier, vol. 207(C), pages 398-406.
    11. Carlo Renno & Alessandro Perone & Diana D’Agostino & Francesco Minichiello, 2023. "Performance Evaluation of a Linear CPV/T System in Different Working Conditions," Energies, MDPI, vol. 16(5), pages 1-19, February.
    12. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Xu, Xiao & Hu, Weihao & Cao, Di & Huang, Qi & Chen, Cong & Chen, Zhe, 2020. "Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system," Renewable Energy, Elsevier, vol. 147(P1), pages 1418-1431.
    14. Li, Jinyu & Yang, Zhengda & Wang, Yiya & Dong, Qiwei & Qi, Shitao & Huang, Chenxing & Wang, Xinwei & Lin, Riyi, 2023. "A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: Optical and thermal performance investigations," Renewable Energy, Elsevier, vol. 206(C), pages 609-622.
    15. Belqasem Aljafari & Subramanian Vasantharaj & Vairavasundaram Indragandhi & Rhanganath Vaibhav, 2022. "Optimization of DC, AC, and Hybrid AC/DC Microgrid-Based IoT Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-30, September.
    16. Wang, Gang & Chao, Yuechao & Chen, Zeshao, 2021. "Promoting developments of hydrogen powered vehicle and solar PV hydrogen production in China: A study based on evolutionary game theory method," Energy, Elsevier, vol. 237(C).
    17. Li, Jidong & Chen, Shijun & Wu, Yuqiang & Wang, Qinhui & Liu, Xing & Qi, Lijian & Lu, Xiuyuan & Gao, Lu, 2021. "How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Calise, F. & Cappiello, F.L. & Cimmino, L. & Vicidomini, M., 2022. "Dynamic simulation modelling of reversible solid oxide fuel cells for energy storage purpose," Energy, Elsevier, vol. 260(C).
    19. Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
    20. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.