IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v82y2005i1p40-63.html
   My bibliography  Save this article

An efficient linear programming model and optimization algorithm for trigeneration

Author

Listed:
  • Rong, Aiying
  • Lahdelma, Risto

Abstract

Trigeneration is a booming technology for efficient and clean provision of energy. It has potential for reducing pollution emissions dramatically. Similar to combined heat and power (CHP) production, cost-efficient operation of a trigeneration system can be planned using an optimization model based on hourly load forecasts. A long-term planning model decomposes into thousands of hourly models, which can be solved separately. In this paper, we model the hourly trigeneration problem as a linear programming (LP) model with a joint characteristic for three energy components to minimize simultaneously the production and purchase costs of three energy components, as well as CO2 emissions costs. Then we explore the structure of the problem and propose the specialized Tri-Commodity Simplex (TCS) algorithm that employs this structure efficiently. The speed of TCS is based on extremely fast basis inverse operations and reuse of old basic solutions from previously solved hourly models. We compare the performance of TCS with realistic models against an efficient sparse Simplex code using the product form of inverse. In test runs, TCS is from 36 to 58 times faster when starting from the initial basis and from 43 to 179 times faster when reusing the old basis.

Suggested Citation

  • Rong, Aiying & Lahdelma, Risto, 2005. "An efficient linear programming model and optimization algorithm for trigeneration," Applied Energy, Elsevier, vol. 82(1), pages 40-63, September.
  • Handle: RePEc:eee:appene:v:82:y:2005:i:1:p:40-63
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00162-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gardner, Douglas T. & Scott Rogers, J., 1997. "Joint planning of combined heat and power and electric power systems: An efficient model formulation," European Journal of Operational Research, Elsevier, vol. 102(1), pages 58-72, October.
    2. Hernández-Santoyo, Joel & Sánchez-Cifuentes, Augusto, 2003. "Trigeneration: an alternative for energy savings," Applied Energy, Elsevier, vol. 76(1-3), pages 219-227, September.
    3. Burer, M. & Tanaka, K. & Favrat, D. & Yamada, K., 2003. "Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers," Energy, Elsevier, vol. 28(6), pages 497-518.
    4. Sakawa, Masatoshi & Kato, Kosuke & Ushiro, Satoshi, 2002. "Operational planning of district heating and cooling plants through genetic algorithms for mixed 0-1 linear programming," European Journal of Operational Research, Elsevier, vol. 137(3), pages 677-687, March.
    5. Lahdelma, Risto & Hakonen, Henri, 2003. "An efficient linear programming algorithm for combined heat and power production," European Journal of Operational Research, Elsevier, vol. 148(1), pages 141-151, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    2. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "An MILP (mixed integer linear programming) model for optimal design of district-scale distributed energy resource systems," Energy, Elsevier, vol. 90(P2), pages 1901-1915.
    3. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    4. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    5. Rong, Aiying & Lahdelma, Risto, 2007. "An efficient envelope-based Branch and Bound algorithm for non-convex combined heat and power production planning," European Journal of Operational Research, Elsevier, vol. 183(1), pages 412-431, November.
    6. Rong, Aiying & Lahdelma, Risto & Grunow, Martin, 2009. "An improved unit decommitment algorithm for combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 195(2), pages 552-562, June.
    7. Cho, Heejin & Mago, Pedro J. & Luck, Rogelio & Chamra, Louay M., 2009. "Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme," Applied Energy, Elsevier, vol. 86(12), pages 2540-2549, December.
    8. Rong, Aiying & Hakonen, Henri & Lahdelma, Risto, 2006. "An efficient linear model and optimisation algorithm for multi-site combined heat and power production," European Journal of Operational Research, Elsevier, vol. 168(2), pages 612-632, January.
    9. Henning, Dag & Amiri, Shahnaz & Holmgren, Kristina, 2006. "Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1224-1247, December.
    10. Mirko M. Stojiljković & Mladen M. Stojiljković & Bratislav D. Blagojević, 2014. "Multi-Objective Combinatorial Optimization of Trigeneration Plants Based on Metaheuristics," Energies, MDPI, vol. 7(12), pages 1-28, December.
    11. Rong, Aiying & Lahdelma, Risto & Luh, Peter B., 2008. "Lagrangian relaxation based algorithm for trigeneration planning with storages," European Journal of Operational Research, Elsevier, vol. 188(1), pages 240-257, July.
    12. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Matrix modelling of small-scale trigeneration systems and application to operational optimization," Energy, Elsevier, vol. 34(3), pages 261-273.
    13. Rong, Aiying & Hakonen, Henri & Lahdelma, Risto, 2008. "A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 190(3), pages 741-755, November.
    14. Rong, Aiying & Figueira, José Rui & Lahdelma, Risto, 2015. "A two phase approach for the bi-objective non-convex combined heat and power production planning problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 296-308.
    15. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "Industrial combined heat and power (CHP) planning: Development of a methodology and application in Greece," Applied Energy, Elsevier, vol. 88(5), pages 1519-1531, May.
    16. Putna, Ondřej & Janošťák, František & Šomplák, Radovan & Pavlas, Martin, 2018. "Demand modelling in district heating systems within the conceptual design of a waste-to-energy plant," Energy, Elsevier, vol. 163(C), pages 1125-1139.
    17. Uhlemair, Harald & Karschin, Ingo & Geldermann, Jutta, 2014. "Optimizing the production and distribution system of bioenergy villages," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 62-72.
    18. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    19. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
    20. Yokoyama, Ryohei & Kitano, Hiroyuki & Wakui, Tetsuya, 2017. "Optimal operation of heat supply systems with piping network," Energy, Elsevier, vol. 137(C), pages 888-897.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:82:y:2005:i:1:p:40-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.