IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v136y2021ics136403212030722x.html
   My bibliography  Save this article

Climate effects of forestry and substitution of concrete buildings and fossil energy

Author

Listed:
  • Gustavsson, L.
  • Nguyen, T.
  • Sathre, R.
  • Tettey, U.Y.A.

Abstract

Forests can help mitigate climate change in different ways, such as by storing carbon in forest ecosystems, and by producing a renewable supply of material and energy products. We analyse the climate implications of different scenarios for forestry, bioenergy and wood construction. We consider three main forestry scenarios for Kronoberg County in Sweden, over a 201-year period. The Business-as-usual scenario mirrors today's forestry while in the Production scenario the forest productivity is increased by 40% through more intensive forestry. In the Set-aside scenario 50% of forest land is set-aside for conservation. The Production scenario results in less net carbon dioxide emissions and cumulative radiative forcing compared to the other scenarios, after an initial period of 30–35 years during which the Set-aside scenario has less emissions. In the end of the analysed period, the Production scenario yields strong emission reductions, about ten times greater than the initial reduction in the Set-aside scenario. Also, the Set-aside scenario has higher emissions than Business-as-usual after about 80 years. Increasing the harvest level of slash and stumps results in climate benefits, due to replacement of more fossil fuel. Greatest emission reduction is achieved when biomass replaces coal, and when modular timber buildings are used. In the long run, active forestry with high harvest and efficient utilisation of biomass for replacement of carbon-intensive non-wood products and fuels provides significant climate mitigation, in contrast to setting aside forest land to store more carbon in the forest and reduce the harvest of biomass.

Suggested Citation

  • Gustavsson, L. & Nguyen, T. & Sathre, R. & Tettey, U.Y.A., 2021. "Climate effects of forestry and substitution of concrete buildings and fossil energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
  • Handle: RePEc:eee:rensus:v:136:y:2021:i:c:s136403212030722x
    DOI: 10.1016/j.rser.2020.110435
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212030722X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhen Xu & Carolyn E. Smyth & Tony C. Lemprière & Greg J. Rampley & Werner A. Kurz, 2018. "Climate change mitigation strategies in the forest sector: biophysical impacts and economic implications in British Columbia, Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 257-290, February.
    2. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    3. Gustavsson, Leif & Truong, Nguyen Le, 2016. "Bioenergy pathways for cars: Effects on primary energy use, climate change and energy system integration," Energy, Elsevier, vol. 115(P3), pages 1779-1789.
    4. Borjesson, Pal & Gustavsson, Leif, 2000. "Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives," Energy Policy, Elsevier, vol. 28(9), pages 575-588, July.
    5. Gustavsson, Leif & Eriksson, Lisa & Sathre, Roger, 2011. "Costs and CO2 benefits of recovering, refining and transporting logging residues for fossil fuel replacement," Applied Energy, Elsevier, vol. 88(1), pages 192-197, January.
    6. Mangoyana, Robert B., 2011. "Bioenergy from forest thinning: Carbon emissions, energy balances and cost analyses," Renewable Energy, Elsevier, vol. 36(9), pages 2368-2373.
    7. Åhman, Max, 2010. "Biomethane in the transport sector--An appraisal of the forgotten option," Energy Policy, Elsevier, vol. 38(1), pages 208-217, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hans Lööf & Andreas Stephan, 2022. "The Impact of the Russian-Ukrainian War on Europe’s Forest-Based Bioeconomy," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 91(3), pages 63-82.
    2. Zhang, Haiyan & Han, Lujia & Dong, Hongmin, 2021. "An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    3. Cai, Mengfan & An, Chunjiang & Guy, Christophe, 2021. "A scientometric analysis and review of biogenic volatile organic compound emissions: Research hotspots, new frontiers, and environmental implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Edgaras Linkevičius & Povilas Žemaitis & Marius Aleinikovas, 2023. "Sustainability Impacts of Wood- and Concrete-Based Frame Buildings," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    5. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Zhang, Qian & Wang, Rong & Tang, Decai & Boamah, Valentina, 2023. "The role and transmission mechanism of forest resource abundance on low-carbon economic development in the Yangtze River Delta region: Insights from the COP26 targets," Resources Policy, Elsevier, vol. 85(PA).
    7. Lars Högbom & Dalia Abbas & Kęstutis Armolaitis & Endijs Baders & Martyn Futter & Aris Jansons & Kalev Jõgiste & Andis Lazdins & Diana Lukminė & Mika Mustonen & Knut Øistad & Anneli Poska & Pasi Rauti, 2021. "Trilemma of Nordic–Baltic Forestry—How to Implement UN Sustainable Development Goals," Sustainability, MDPI, vol. 13(10), pages 1-12, May.
    8. Anna Sobotka & Kazimierz Linczowski & Aleksandra Radziejowska, 2021. "Substitution of Building Components in Historic Buildings," Sustainability, MDPI, vol. 13(16), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sathre, Roger & Gustavsson, Leif & Truong, Nguyen Le, 2017. "Climate effects of electricity production fuelled by coal, forest slash and municipal solid waste with and without carbon capture," Energy, Elsevier, vol. 122(C), pages 711-723.
    2. Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
    3. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    4. Edgaras Linkevičius & Povilas Žemaitis & Marius Aleinikovas, 2023. "Sustainability Impacts of Wood- and Concrete-Based Frame Buildings," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    5. Giuntoli, J. & Searle, S. & Jonsson, R. & Agostini, A. & Robert, N. & Amaducci, S. & Marelli, L. & Camia, A., 2020. "Carbon accounting of bioenergy and forest management nexus. A reality-check of modeling assumptions and expectations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Ebers Broughel, Anna, 2019. "Impact of state policies on generating capacity for production of electricity and combined heat and power from forest biomass in the United States," Renewable Energy, Elsevier, vol. 134(C), pages 1163-1172.
    7. Shenghan Li & Huanyu Wu & Zhikun Ding, 2018. "Identifying Sustainable Wood Sources for the Construction Industry: A Case Study," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    8. Petri P. Kärenlampi, 2021. "Capital Return Rate and Carbon Storage on Forest Estates of Three Boreal Tree Species," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    9. Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    10. Herbes, Carsten & Rilling, Benedikt & Ringel, Marc, 2021. "Policy frameworks and voluntary markets for biomethane – How do different policies influence providers’ product strategies?," Energy Policy, Elsevier, vol. 153(C).
    11. Lönnqvist, Tomas & Grönkvist, Stefan & Sandberg, Thomas, 2017. "Forest-derived methane in the Swedish transport sector: A closing window?," Energy Policy, Elsevier, vol. 105(C), pages 440-450.
    12. Pang, Xi & Nordström, Eva-Maria & Böttcher, Hannes & Trubins, Renats & Mörtberg, Ulla, 2017. "Trade-offs and synergies among ecosystem services under different forest management scenarios – The LEcA tool," Ecosystem Services, Elsevier, vol. 28(PA), pages 67-79.
    13. Hertog, Iris Maria & Brogaard, Sara, 2021. "Struggling for an ideal dialogue. An analysis of the regional dialogue processes within Sweden's first National Forest Program," Forest Policy and Economics, Elsevier, vol. 130(C).
    14. Dimoudi, A. & Tompa, C., 2008. "Energy and environmental indicators related to construction of office buildings," Resources, Conservation & Recycling, Elsevier, vol. 53(1), pages 86-95.
    15. Truong, Nguyen Le & Gustavsson, Leif, 2013. "Integrated biomass-based production of district heat, electricity, motor fuels and pellets of different scales," Applied Energy, Elsevier, vol. 104(C), pages 623-632.
    16. Elias Hurmekoski & Tanja Myllyviita & Jyri Seppälä & Tero Heinonen & Antti Kilpeläinen & Timo Pukkala & Tuomas Mattila & Lauri Hetemäki & Antti Asikainen & Heli Peltola, 2020. "Impact of structural changes in wood‐using industries on net carbon emissions in Finland," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 899-912, August.
    17. Brainard, Julii & Lovett, Andrew & Bateman, Ian, 2006. "Sensitivity analysis in calculating the social value of carbon sequestered in British grown Sitka spruce," Journal of Forest Economics, Elsevier, vol. 12(3), pages 201-228, December.
    18. Venn, Tyron J., 2023. "Reconciling timber harvesting, biodiversity conservation and carbon sequestration in Queensland, Australia," Forest Policy and Economics, Elsevier, vol. 152(C).
    19. L. Gustavsson & R. Madlener & H.-F. Hoen & G. Jungmeier & T. Karjalainen & S. KlÖhn & K. Mahapatra & J. Pohjola & B. Solberg & H. Spelter, 2006. "The Role of Wood Material for Greenhouse Gas Mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1097-1127, September.
    20. Piotr Bórawski & Aneta Bełdycka-Bórawska & Lisa Holden, 2023. "Changes in the Polish Coal Sector Economic Situation with the Background of the European Union Energy Security and Eco-Efficiency Policy," Energies, MDPI, vol. 16(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:136:y:2021:i:c:s136403212030722x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.