IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1560-d1034899.html
   My bibliography  Save this article

Sustainability Impacts of Wood- and Concrete-Based Frame Buildings

Author

Listed:
  • Edgaras Linkevičius

    (Faculty of Forest Sciences and Ecology, Agriculture Academy, Vytautas Magnus University, Studentų 13, Akademija, LT-53362 Kaunas, Lithuania)

  • Povilas Žemaitis

    (Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kėdainiai, Lithuania)

  • Marius Aleinikovas

    (Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kėdainiai, Lithuania)

Abstract

The European Commission adopted a long-term strategic vision aiming for climate neutrality by 2050. Lithuania ratified the Paris agreement, making a binding commitment to cut its 1990 baseline GHG emissions by 40% in all sectors of its economy by 2030. In Lithuania, the main construction material is cement, even though Lithuania has a strong wood-based industry and abundant timber resources. Despite this, approximately twenty percent of the annual roundwood production from Lithuanian forests is exported, as well as other final wood products that could be used in the local construction sector. To highlight the potential that timber frame construction holds for carbon sequestration efforts, timber and concrete buildings were directly compared and quantified in terms of sustainability across their production value chains. Here the concept of “exemplary buildings” was avoided, instead a “traditional building” design was opted for, and two- and five-floor public buildings were selected. In this study, eleven indicators were selected to compare the sustainability impacts of wood-based and concrete-based construction materials, using a decision support tool ToSIA (a tool for sustainability impact assessment). Findings revealed the potential of glue-laminated timber (GLT) frames as a more sustainable alternative to precast reinforced concrete (PRC) in the construction of public low-rise buildings in Lithuania, and they showed great promise in reducing emissions and increasing the sequestration of CO 2 . An analysis of environmental and social indicators shows that the replacement of PRC frames with GLT frames in the construction of low-rise public buildings would lead to reduced environmental impacts, alongside a range of positive social impacts.

Suggested Citation

  • Edgaras Linkevičius & Povilas Žemaitis & Marius Aleinikovas, 2023. "Sustainability Impacts of Wood- and Concrete-Based Frame Buildings," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1560-:d:1034899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    2. Borjesson, Pal & Gustavsson, Leif, 2000. "Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives," Energy Policy, Elsevier, vol. 28(9), pages 575-588, July.
    3. Toivonen, Ritva & Lilja, Anna & Vihemäki, Heini & Toppinen, Anne, 2021. "Future export markets of industrial wood construction – A qualitative backcasting study," Forest Policy and Economics, Elsevier, vol. 128(C).
    4. Leif Gustavsson & Kim Pingoud & Roger Sathre, 2006. "Carbon Dioxide Balance of Wood Substitution: Comparing Concrete- and Wood-Framed Buildings," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 667-691, May.
    5. Bruno, Roberto & Bevilacqua, Piero & Cuconati, Teresa & Arcuri, Natale, 2019. "Energy evaluations of an innovative multi-storey wooden near Zero Energy Building designed for Mediterranean areas," Applied Energy, Elsevier, vol. 238(C), pages 929-941.
    6. Minunno, Roberto & O'Grady, Timothy & Morrison, Gregory M. & Gruner, Richard L., 2021. "Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Dodoo, Ambrose & Gustavsson, Leif & Sathre, Roger, 2009. "Carbon implications of end-of-life management of building materials," Resources, Conservation & Recycling, Elsevier, vol. 53(5), pages 276-286.
    8. Gustavsson, L. & Nguyen, T. & Sathre, R. & Tettey, U.Y.A., 2021. "Climate effects of forestry and substitution of concrete buildings and fossil energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    9. McIntosh, Alison J. & Cockburn-Wootten, Cheryl, 2016. "Using Ketso for engaged tourism scholarship," Annals of Tourism Research, Elsevier, vol. 56(C), pages 148-151.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    2. Hurmekoski, Elias & Kunttu, Janni & Heinonen, Tero & Pukkala, Timo & Peltola, Heli, 2023. "Does expanding wood use in construction and textile markets contribute to climate change mitigation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    3. Braun, Martin & Winner, Georg & Schwarzbauer, Peter & Stern, Tobias, 2016. "Apparent Half-Life-Dynamics of Harvested Wood Products (HWPs) in Austria: Development and analysis of weighted time-series for 2002 to 2011," Forest Policy and Economics, Elsevier, vol. 63(C), pages 28-34.
    4. Sathre, Roger & Gustavsson, Leif, 2009. "Using wood products to mitigate climate change: External costs and structural change," Applied Energy, Elsevier, vol. 86(2), pages 251-257, February.
    5. Chi-hsiang Wang & Xiaoming Wang, 2012. "Vulnerability of timber in ground contact to fungal decay under climate change," Climatic Change, Springer, vol. 115(3), pages 777-794, December.
    6. Gustavsson, L. & Nguyen, T. & Sathre, R. & Tettey, U.Y.A., 2021. "Climate effects of forestry and substitution of concrete buildings and fossil energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    7. Gustavsson, L. & Holmberg, J. & Dornburg, V. & Sathre, R. & Eggers, T. & Mahapatra, K. & Marland, G., 2007. "Using biomass for climate change mitigation and oil use reduction," Energy Policy, Elsevier, vol. 35(11), pages 5671-5691, November.
    8. C. Bergeron, Francis, 2014. "Assessment of the coherence of the Swiss waste wood management," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 62-70.
    9. Koponen, Kati & Soimakallio, Sampo & Kline, Keith L. & Cowie, Annette & Brandão, Miguel, 2018. "Quantifying the climate effects of bioenergy – Choice of reference system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2271-2280.
    10. Tadeusz Kuczyński & Anna Staszczuk & Piotr Ziembicki & Anna Paluszak, 2021. "The Effect of the Thermal Mass of the Building Envelope on Summer Overheating of Dwellings in a Temperate Climate," Energies, MDPI, vol. 14(14), pages 1-17, July.
    11. Hallberg-Sramek, Isabella & Nordström, Eva-Maria & Priebe, Janina & Reimerson, Elsa & Mårald, Erland & Nordin, Annika, 2023. "Combining scientific and local knowledge improves evaluating future scenarios of forest ecosystem services," Ecosystem Services, Elsevier, vol. 60(C).
    12. Heiskanen, Aleksi & Hurmekoski, Elias & Toppinen, Anne & Näyhä, Annukka, 2022. "Exploring the unknowns – State of the art in qualitative forest-based sector foresight research," Forest Policy and Economics, Elsevier, vol. 135(C).
    13. Shenghan Li & Huanyu Wu & Zhikun Ding, 2018. "Identifying Sustainable Wood Sources for the Construction Industry: A Case Study," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    14. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    15. Sathre, Roger & Gustavsson, Leif, 2009. "Process-based analysis of added value in forest product industries," Forest Policy and Economics, Elsevier, vol. 11(1), pages 65-75, January.
    16. Anna Magrini & Giorgia Lentini, 2020. "NZEB Analyses by Means of Dynamic Simulation and Experimental Monitoring in Mediterranean Climate," Energies, MDPI, vol. 13(18), pages 1-25, September.
    17. Petri P. Kärenlampi, 2021. "Capital Return Rate and Carbon Storage on Forest Estates of Three Boreal Tree Species," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    18. Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    19. Sampo Soimakallio & Tuomo Kalliokoski & Aleksi Lehtonen & Olli Salminen, 2021. "On the trade-offs and synergies between forest carbon sequestration and substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(1), pages 1-17, January.
    20. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1560-:d:1034899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.