IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4633-d792766.html
   My bibliography  Save this article

Toward Carbon-Neutral Concrete through Biochar–Cement–Calcium Carbonate Composites: A Critical Review

Author

Listed:
  • Dahl Winters

    (Systems Engineering Department, Colorado State University, Fort Collins, CO 80523, USA)

  • Kwaku Boakye

    (Systems Engineering Department, Colorado State University, Fort Collins, CO 80523, USA)

  • Steven Simske

    (Systems Engineering Department, Colorado State University, Fort Collins, CO 80523, USA)

Abstract

High-density, high-permanence forms of carbon storage are in demand to save storage space on land or at sea while allowing the world to reach its climate targets. Biochar and calcium carbonate are two such forms that have been considered largely separately in the literature for carbon storage. In this paper, we consider how biochar and calcium carbonate might interact when they are used together with cement as part of a carbon storage system, ideally to form a carbon-neutral concrete. The carbon storage system stores atmospherically absorbed CO 2 within concrete, thereby reducing carbon in the atmosphere. In addition, such a system will help in reducing cement usage, thus reducing the need for clinker in cement manufacturing and directly reducing CO 2 emissions that result from limestone calcination during clinker manufacturing. Another benefit of such a composite storage system is its use in building structures, a use that has positive environmental and social impact. Thus, further research on the properties of this composite material is warranted. This paper explores the literature on the use of biochar combined with calcium carbonate and cement as carbon storage material. The use of recycled carbon aggregates (RCAs) and LC3 concrete as part of this approach is reviewed. The paper also addresses the possible compressive strength range of the biochar–cement–calcium carbonate composite material, along with other performance expectations. Obstacles to scaling the use of carbon-neutral concrete are identified and an array of research directions are presented, with the goal of improving carbon-neutral concrete and its use.

Suggested Citation

  • Dahl Winters & Kwaku Boakye & Steven Simske, 2022. "Toward Carbon-Neutral Concrete through Biochar–Cement–Calcium Carbonate Composites: A Critical Review," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4633-:d:792766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Al-Mansour & Cheuk Lun Chow & Luciano Feo & Rosa Penna & Denvid Lau, 2019. "Green Concrete: By-Products Utilization and Advanced Approaches," Sustainability, MDPI, vol. 11(19), pages 1-30, September.
    2. Minunno, Roberto & O'Grady, Timothy & Morrison, Gregory M. & Gruner, Richard L., 2021. "Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Dissanayake, Pavani Dulanja & You, Siming & Igalavithana, Avanthi Deshani & Xia, Yinfeng & Bhatnagar, Amit & Gupta, Souradeep & Kua, Harn Wei & Kim, Sumin & Kwon, Jung-Hwan & Tsang, Daniel C.W. & Ok, , 2020. "Biochar-based adsorbents for carbon dioxide capture: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Rhoda Afriyie Mensah & Vigneshwaran Shanmugam & Sreenivasan Narayanan & Nima Razavi & Adrian Ulfberg & Thomas Blanksvärd & Faez Sayahi & Peter Simonsson & Benjamin Reinke & Michael Försth & Gabriel Sa, 2021. "Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    5. Yang, Qiushuang & Mašek, Ondřej & Zhao, Ling & Nan, Hongyan & Yu, Shitong & Yin, Jianxiang & Li, Zhaopeng & Cao, Xinde, 2021. "Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation," Applied Energy, Elsevier, vol. 282(PB).
    6. Rayane Mrad & Ghassan Chehab, 2019. "Mechanical and Microstructure Properties of Biochar-Based Mortar: An Internal Curing Agent for PCC," Sustainability, MDPI, vol. 11(9), pages 1-15, April.
    7. Cabeza, Luisa F. & Barreneche, Camila & Miró, Laia & Morera, Josep M. & Bartolí, Esther & Inés Fernández, A., 2013. "Low carbon and low embodied energy materials in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 536-542.
    8. Antonella D'Alessandro & Claudia Fabiani & Anna Laura Pisello & Filippo Ubertini & A. Luigi Materazzi & Franco Cotana, 2017. "Innovative concretes for low-carbon constructions: a review," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(3), pages 289-309.
    9. Infante Gomes, Ricardo & Brazão Farinha, Catarina & Veiga, Rosário & de Brito, Jorge & Faria, Paulina & Bastos, David, 2021. "CO2 sequestration by construction and demolition waste aggregates and effect on mortars and concrete performance - An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdul Munaf Mohamed Irfeey & Hing-Wah Chau & Mohamed Mahusoon Fathima Sumaiya & Cheuk Yin Wai & Nitin Muttil & Elmira Jamei, 2023. "Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    2. Nehdi, Moncef L. & Marani, Afshin & Zhang, Lei, 2024. "Is net-zero feasible: Systematic review of cement and concrete decarbonization technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu Li & Wen Xue & Wenjian Zhou, 2023. "Mechanical Properties of Concrete with Different Carya Cathayensis Peel Biochar Additions," Sustainability, MDPI, vol. 15(6), pages 1-12, March.
    2. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    3. Shin, Bigyeong & Chang, Seong Jin & Wi, Seunghwan & Kim, Sumin, 2023. "Estimation of energy demand and greenhouse gas emission reduction effect of cross-laminated timber (CLT) hybrid wall using life cycle assessment for urban residential planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Antonello Monsù Scolaro & Stefania De Medici, 2021. "Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective," Energies, MDPI, vol. 14(21), pages 1-23, October.
    5. Miró, Laia & Oró, Eduard & Boer, Dieter & Cabeza, Luisa F., 2015. "Embodied energy in thermal energy storage (TES) systems for high temperature applications," Applied Energy, Elsevier, vol. 137(C), pages 793-799.
    6. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    7. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    8. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    9. Ghasan Fahim Huseien & Kwok Wei Shah, 2021. "Potential Applications of 5G Network Technology for Climate Change Control: A Scoping Review of Singapore," Sustainability, MDPI, vol. 13(17), pages 1-26, August.
    10. Carla L. Simões & Ricardo Simoes & Ana Sofia Gonçalves & Leonel J. R. Nunes, 2023. "Environmental Analysis of the Valorization of Woody Biomass Residues: A Comparative Study with Vine Pruning Leftovers in Portugal," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    11. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    12. Henriette Fischer & Martin Aichholzer & Azra Korjenic, 2023. "Ecological Potential of Building Components in Multi-Storey Residential Construction: A Comparative Case Study between an Existing Concrete and a Timber Building in Austria," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    13. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Hugo Alexander Rondón-Quintana & Fredy Alberto Reyes-Lizcano & Saieth Baudilio Chaves-Pabón & Juan Gabriel Bastidas-Martínez & Carlos Alfonso Zafra-Mejía, 2022. "Use of Biochar in Asphalts: Review," Sustainability, MDPI, vol. 14(8), pages 1-12, April.
    15. Cameron Wells & Roberto Minunno & Heap-Yih Chong & Gregory M. Morrison, 2022. "Strategies for the Adoption of Hydrogen-Based Energy Storage Systems: An Exploratory Study in Australia," Energies, MDPI, vol. 15(16), pages 1-15, August.
    16. Rhoda Afriyie Mensah & Vigneshwaran Shanmugam & Sreenivasan Narayanan & Nima Razavi & Adrian Ulfberg & Thomas Blanksvärd & Faez Sayahi & Peter Simonsson & Benjamin Reinke & Michael Försth & Gabriel Sa, 2021. "Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    17. Nura Shehu Aliyu Yaro & Muslich Hartadi Sutanto & Noor Zainab Habib & Aliyu Usman & Jibrin Mohammed Kaura & Abdulfatai Adinoyi Murana & Abdullahi Haruna Birniwa & Ahmad Hussaini Jagaba, 2023. "A Comprehensive Review of Biochar Utilization for Low-Carbon Flexible Asphalt Pavements," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    18. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    19. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    20. Chen, Jiayu & Qiu, Qiwen & Han, Yilong & Lau, Denvid, 2019. "Piezoelectric materials for sustainable building structures: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 14-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4633-:d:792766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.