IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3144-d1679557.html
   My bibliography  Save this article

Thermal Conductivity of Sustainable Earthen Materials Stabilized by Natural and Bio-Based Polymers: An Experimental and Statistical Analysis

Author

Listed:
  • Rizwan Shoukat

    (Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy)

  • Marta Cappai

    (Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy)

  • Giorgio Pia

    (Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy)

  • Tadeusz Kubaszek

    (Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland)

  • Roberto Ricciu

    (Dipartimento di Ingegneria Civile, Ambientale e Architettura, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy)

  • Łukasz Kolek

    (Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland)

  • Luca Pilia

    (Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy)

Abstract

The natural and sustainable ability of earthen building materials makes them highly valuable. Bio-stabilization involves using biological materials or processes in earthen construction to enhance the performance and characteristics of earthen materials. The main objective of bio-stabilization is to substitute high-energy-intensive building materials with more green, thermally efficient substitutions, ultimately reducing indirect emissions. The large-scale use of earth presents a viable alternative due to its extensive availability and, more importantly, its low embodied energy. The aim of this work is to investigate the thermal conductivity of earth stabilized with Opuntia Ficus-Indica (OFI), a natural biopolymer, and to assess how these properties vary based on mix design. A comparative analysis is performed to evaluate the thermal performance of bio-based polymer-stabilized earthen materials (S-30, S-40, D-30, and D-40) alongside natural biopolymer-stabilized earth (OFI-30 and OFI-40) under dry conditions, employing an experimental method. A scanning electron microscope was employed to examine the microstructure of bio-stabilized earthen materials from the samples. Statistical analysis was conducted on the collected data using ANOVA with a significance level of 0.05. The Tukey test was applied to identify specific mean pairings that demonstrate significant differences in the characteristics of the mixtures at each replacement level, maintaining a confidence interval of 95%. The experimental and statistical findings reveal that the OFI-30, D-40, and S-40 mixtures exhibit strong bonding with earthen materials and high thermal performance compared to all other mix designs in environmental samples. Additionally, these mix designs show further improvement in thermal performance in the dry conditions.

Suggested Citation

  • Rizwan Shoukat & Marta Cappai & Giorgio Pia & Tadeusz Kubaszek & Roberto Ricciu & Łukasz Kolek & Luca Pilia, 2025. "Thermal Conductivity of Sustainable Earthen Materials Stabilized by Natural and Bio-Based Polymers: An Experimental and Statistical Analysis," Energies, MDPI, vol. 18(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3144-:d:1679557
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cabeza, Luisa F. & Barreneche, Camila & Miró, Laia & Morera, Josep M. & Bartolí, Esther & Inés Fernández, A., 2013. "Low carbon and low embodied energy materials in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 536-542.
    2. Ben-Alon, L. & Loftness, V. & Harries, K.A. & Cochran Hameen, E., 2021. "Life cycle assessment (LCA) of natural vs conventional building assemblies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miró, Laia & Oró, Eduard & Boer, Dieter & Cabeza, Luisa F., 2015. "Embodied energy in thermal energy storage (TES) systems for high temperature applications," Applied Energy, Elsevier, vol. 137(C), pages 793-799.
    2. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    3. Dorota Chwieduk & Bartosz Chwieduk, 2023. "Application of Heat Pumps in New Housing Estates in Cities Suburbs as an Means of Energy Transformation in Poland," Energies, MDPI, vol. 16(8), pages 1-19, April.
    4. Dahl Winters & Kwaku Boakye & Steven Simske, 2022. "Toward Carbon-Neutral Concrete through Biochar–Cement–Calcium Carbonate Composites: A Critical Review," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    5. Ghasan Fahim Huseien & Kwok Wei Shah, 2021. "Potential Applications of 5G Network Technology for Climate Change Control: A Scoping Review of Singapore," Sustainability, MDPI, vol. 13(17), pages 1-26, August.
    6. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Claudio Zandonella Callegher & Gianluca Grazieschi & Eric Wilczynski & Ulrich Filippi Oberegger & Simon Pezzutto, 2023. "Assessment of Building Materials in the European Residential Building Stock: An Analysis at EU27 Level," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    8. Ahmadi, Mohsen & Piadeh, Farzad & Hosseini, M. Reza & Zuo, Jian & Kocaturk, Tuba, 2024. "Unraveling building sector carbon mechanisms: Critique and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    9. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    10. Chen, Jiayu & Qiu, Qiwen & Han, Yilong & Lau, Denvid, 2019. "Piezoelectric materials for sustainable building structures: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 14-25.
    11. Gianmarco Fajilla & Emiliano Borri & Marilena De Simone & Luisa F. Cabeza & Luís Bragança, 2021. "Effect of Climate Change and Occupant Behaviour on the Environmental Impact of the Heating and Cooling Systems of a Real Apartment. A Parametric Study through Life Cycle Assessment," Energies, MDPI, vol. 14(24), pages 1-21, December.
    12. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    13. Shin, Bigyeong & Chang, Seong Jin & Wi, Seunghwan & Kim, Sumin, 2023. "Estimation of energy demand and greenhouse gas emission reduction effect of cross-laminated timber (CLT) hybrid wall using life cycle assessment for urban residential planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    14. Pomponi, Francesco & Moncaster, Alice, 2018. "Scrutinising embodied carbon in buildings: The next performance gap made manifest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2431-2442.
    15. Seo, Seongwon & Kim, Junbeum & Yum, Kwok-Keung & McGregor, James, 2015. "Embodied carbon of building products during their supply chains: Case study of aluminium window in Australia," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 160-166.
    16. Shi, Qian & Yu, Tao & Zuo, Jian, 2015. "What leads to low-carbon buildings? A China study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 726-734.
    17. Mohammad Masfiqul Alam Bhuiyan & Ahmed Hammad, 2024. "Engineering and Design for Sustainable Construction: A Bibliometric Analysis of Current Status and Future Trends," Sustainability, MDPI, vol. 16(7), pages 1-26, April.
    18. Eeva-Sofia Säynäjoki & Pia Korba & Elina Kalliala & Aino-Kaisa Nuotio, 2018. "GHG Emissions Reduction through Urban Planners’ Improved Control over Earthworks: A Case Study in Finland," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    19. Roh, Seungjun & Tae, Sungho & Suk, Sung Joon & Ford, George, 2017. "Evaluating the embodied environmental impacts of major building tasks and materials of apartment buildings in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 135-144.
    20. Sehee Han & Seunguk Na & Nam-Gi Lim, 2020. "Evaluation of Road Transport Pollutant Emissions from Transporting Building Materials to the Construction Site by Replacing Old Vehicles," IJERPH, MDPI, vol. 17(24), pages 1-15, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3144-:d:1679557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.