IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3144-d1679557.html
   My bibliography  Save this article

Thermal Conductivity of Sustainable Earthen Materials Stabilized by Natural and Bio-Based Polymers: An Experimental and Statistical Analysis

Author

Listed:
  • Rizwan Shoukat

    (Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy)

  • Marta Cappai

    (Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy)

  • Giorgio Pia

    (Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy)

  • Tadeusz Kubaszek

    (Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland)

  • Roberto Ricciu

    (Dipartimento di Ingegneria Civile, Ambientale e Architettura, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy)

  • Łukasz Kolek

    (Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland)

  • Luca Pilia

    (Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy)

Abstract

The natural and sustainable ability of earthen building materials makes them highly valuable. Bio-stabilization involves using biological materials or processes in earthen construction to enhance the performance and characteristics of earthen materials. The main objective of bio-stabilization is to substitute high-energy-intensive building materials with more green, thermally efficient substitutions, ultimately reducing indirect emissions. The large-scale use of earth presents a viable alternative due to its extensive availability and, more importantly, its low embodied energy. The aim of this work is to investigate the thermal conductivity of earth stabilized with Opuntia Ficus-Indica (OFI), a natural biopolymer, and to assess how these properties vary based on mix design. A comparative analysis is performed to evaluate the thermal performance of bio-based polymer-stabilized earthen materials (S-30, S-40, D-30, and D-40) alongside natural biopolymer-stabilized earth (OFI-30 and OFI-40) under dry conditions, employing an experimental method. A scanning electron microscope was employed to examine the microstructure of bio-stabilized earthen materials from the samples. Statistical analysis was conducted on the collected data using ANOVA with a significance level of 0.05. The Tukey test was applied to identify specific mean pairings that demonstrate significant differences in the characteristics of the mixtures at each replacement level, maintaining a confidence interval of 95%. The experimental and statistical findings reveal that the OFI-30, D-40, and S-40 mixtures exhibit strong bonding with earthen materials and high thermal performance compared to all other mix designs in environmental samples. Additionally, these mix designs show further improvement in thermal performance in the dry conditions.

Suggested Citation

  • Rizwan Shoukat & Marta Cappai & Giorgio Pia & Tadeusz Kubaszek & Roberto Ricciu & Łukasz Kolek & Luca Pilia, 2025. "Thermal Conductivity of Sustainable Earthen Materials Stabilized by Natural and Bio-Based Polymers: An Experimental and Statistical Analysis," Energies, MDPI, vol. 18(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3144-:d:1679557
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3144/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3144-:d:1679557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.