IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3495-d1125477.html
   My bibliography  Save this article

Application of Heat Pumps in New Housing Estates in Cities Suburbs as an Means of Energy Transformation in Poland

Author

Listed:
  • Dorota Chwieduk

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, ul. Nowowiejska 21/25, 00665 Warsaw, Poland)

  • Bartosz Chwieduk

    (SPS Engineering, ul. Pulawska 405, 02501 Warsaw, Poland)

Abstract

This paper presents possible applications of heat pumps in buildings during the energy transformation and decarbonization of a country whose energy sector is highly centralized and based on coal. Contemporary cities are spreading beyond the existing borders and new areas cannot be supplied by the existing centralized district heating system. The only form of energy that is available on the outskirts of cities is electricity, which means that it must be used for all energy needs, including heating. In such a case, the use of heat pumps is perfectly justified in terms of energy, economy and environment, especially when they are coupled with photovoltaic systems. Hypothetical micro housing estate energy systems based on photovoltaics and heat pumps are analyzed in the paper. New options for configuration and operation of the energy systems are considered. Results of a simulation study show that by creating a common local electricity network and a local heating network powered by a central heat pump, the direct use of electricity generated in the local photovoltaic systems increases from 25% to at least 35%, thanks to enabling more even storing and consuming of solar energy during a day, compared to the independent operation of energy systems at individual houses.

Suggested Citation

  • Dorota Chwieduk & Bartosz Chwieduk, 2023. "Application of Heat Pumps in New Housing Estates in Cities Suburbs as an Means of Energy Transformation in Poland," Energies, MDPI, vol. 16(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3495-:d:1125477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicole Anderson & Gayan Wedawatta & Ishara Rathnayake & Niluka Domingo & Zahirah Azizi, 2022. "Embodied Energy Consumption in the Residential Sector: A Case Study of Affordable Housing," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    2. Luca Ciacci & Fabrizio Passarini, 2020. "Life Cycle Assessment (LCA) of Environmental and Energy Systems," Energies, MDPI, vol. 13(22), pages 1-8, November.
    3. Diana D’Agostino & Luigi Mele & Francesco Minichiello & Carlo Renno, 2020. "The Use of Ground Source Heat Pump to Achieve a Net Zero Energy Building," Energies, MDPI, vol. 13(13), pages 1-22, July.
    4. Hanna Jędrzejuk & Dorota Chwieduk, 2021. "Possibilities of Upgrading Warsaw Existing Residential Area to Status of Positive Energy Districts," Energies, MDPI, vol. 14(18), pages 1-17, September.
    5. Véronique Vasseur & Anne-Francoise Marique & Vladimir Udalov, 2019. "A Conceptual Framework to Understand Households’ Energy Consumption," Energies, MDPI, vol. 12(22), pages 1-22, November.
    6. Chwieduk, Bartosz & Chwieduk, Dorota, 2021. "Analysis of operation and energy performance of a heat pump driven by a PV system for space heating of a single family house in polish conditions," Renewable Energy, Elsevier, vol. 165(P2), pages 117-126.
    7. Carroll, P. & Chesser, M. & Lyons, P., 2020. "Air Source Heat Pumps field studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Marcin Zygmunt & Dariusz Gawin, 2021. "Application of Artificial Neural Networks in the Urban Building Energy Modelling of Polish Residential Building Stock," Energies, MDPI, vol. 14(24), pages 1-15, December.
    9. Chwieduk, Dorota A., 2017. "Towards modern options of energy conservation in buildings," Renewable Energy, Elsevier, vol. 101(C), pages 1194-1202.
    10. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    11. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    12. Dorota Chwieduk & Wojciech Bujalski & Bartosz Chwieduk, 2020. "Possibilities of Transition from Centralized Energy Systems to Distributed Energy Sources in Large Polish Cities," Energies, MDPI, vol. 13(22), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sławomir Stec & Elżbieta Jadwiga Szymańska & Jolanta Stec-Rusiecka & Jolanta Puacz-Olszewska, 2023. "Transformation of the Polish Heating Sector Based on an Example of Select Heat Energy Companies Supplying Energy to Local Government Units," Energies, MDPI, vol. 16(22), pages 1-33, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nan Yang & Weixiu Shi & Zihong Zhou, 2023. "Research on Application and International Policy of Renewable Energy in Buildings," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    2. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    3. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    4. Hanna Jędrzejuk & Dorota Chwieduk, 2021. "Possibilities of Upgrading Warsaw Existing Residential Area to Status of Positive Energy Districts," Energies, MDPI, vol. 14(18), pages 1-17, September.
    5. O'Hegarty, R. & Kinnane, O. & Lennon, D. & Colclough, S., 2022. "Air-to-water heat pumps: Review and analysis of the performance gap between in-use and product rated performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Yang, Jiangming & Wu, Huijun & Xu, Xinhua & Huang, Gongsheng & Xu, Tao & Guo, Sitong & Liang, Yuying, 2019. "Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency," Renewable Energy, Elsevier, vol. 138(C), pages 445-457.
    7. Wang, Wenyi & Zhao, Zhongfan & Zhou, Qun & Qiao, Yiyuan & Cao, Feng, 2021. "Model predictive control for the operation of a transcritical CO2 air source heat pump water heater," Applied Energy, Elsevier, vol. 300(C).
    8. Chwieduk, Bartosz & Chwieduk, Dorota, 2021. "Analysis of operation and energy performance of a heat pump driven by a PV system for space heating of a single family house in polish conditions," Renewable Energy, Elsevier, vol. 165(P2), pages 117-126.
    9. Mahaut Vauchez & Jacopo Famiglietti & Kevin Autelitano & Morgane Colombert & Rossano Scoccia & Mario Motta, 2023. "Life Cycle Assessment of District Heating Infrastructures: A Comparison of Pipe Typologies in France," Energies, MDPI, vol. 16(9), pages 1-23, May.
    10. Giovanni Murano & Francesca Caffari & Nicolandrea Calabrese, 2024. "Energy Potential of Existing Reversible Air-to-Air Heat Pumps for Residential Heating," Sustainability, MDPI, vol. 16(14), pages 1-23, July.
    11. Martina Gizzi & Federico Vagnon & Glenda Taddia & Stefano Lo Russo, 2023. "A Review of Groundwater Heat Pump Systems in the Italian Framework: Technological Potential and Environmental Limits," Energies, MDPI, vol. 16(12), pages 1-13, June.
    12. Waldemar Izdebski & Katarzyna Kosiorek, 2023. "Analysis and Evaluation of the Possibility of Electricity Production from Small Photovoltaic Installations in Poland," Energies, MDPI, vol. 16(2), pages 1-19, January.
    13. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2023. "Audit-Based Energy Performance Analysis of Multifamily Buildings in South-East Poland," Energies, MDPI, vol. 16(12), pages 1-21, June.
    14. Candas, Soner & Reveron Baecker, Beneharo & Mohapatra, Anurag & Hamacher, Thomas, 2023. "Optimization-based framework for low-voltage grid reinforcement assessment under various levels of flexibility and coordination," Applied Energy, Elsevier, vol. 343(C).
    15. Xueliang Yuan & Xiaoyu Zhang & Jiaxin Liang & Qingsong Wang & Jian Zuo, 2017. "The Development of Building Energy Conservation in China: A Review and Critical Assessment from the Perspective of Policy and Institutional System," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    16. Qin, Siyu & Ji, Ruiyang & Miao, Chengyu & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2024. "Review of enhancing boiling and condensation heat transfer: Surface modification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    17. Claudio Zandonella Callegher & Gianluca Grazieschi & Eric Wilczynski & Ulrich Filippi Oberegger & Simon Pezzutto, 2023. "Assessment of Building Materials in the European Residential Building Stock: An Analysis at EU27 Level," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    18. Eleni Oikonomou & Nici Zimmermann & Michael Davies & Tadj Oreszczyn, 2022. "Behavioural Change as a Domestic Heat Pump Performance Driver: Insights on the Influence of Feedback Systems from Multiple Case Studies in the UK," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    19. Paula Sankelo & Kaiser Ahmed & Alo Mikola & Jarek Kurnitski, 2022. "Renovation Results of Finnish Single-Family Renovation Subsidies: Oil Boiler Replacement with Heat Pumps," Energies, MDPI, vol. 15(20), pages 1-18, October.
    20. Solomzi Marco Ngalonkulu & Zhongjie Huan, 2024. "Viability of an Open-Loop Heat Pump Drying System in South African Climatic Conditions," Energies, MDPI, vol. 17(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3495-:d:1125477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.