IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4813-d1174953.html
   My bibliography  Save this article

A Review of Groundwater Heat Pump Systems in the Italian Framework: Technological Potential and Environmental Limits

Author

Listed:
  • Martina Gizzi

    (Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Federico Vagnon

    (Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Glenda Taddia

    (Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Stefano Lo Russo

    (Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract

For new buildings in densely urbanised cities, groundwater heat pump systems (GWHPs) represent a concrete, effective solution for decarbonising existing energy systems. Environmental factors must be considered to limit the GWHP system’s impact on the subsurface. Particular attention must be given to the long-term sustainability of groundwater abstraction modalities and the development of a thermally affected zone around re-injection wells. Simplified solutions and numerical models have been applied to predict subsurface heat transport mechanisms; these simulations allow researchers to consider site-specific geological conditions, transient heat and groundwater flow regimes, and anisotropies in the subsurface media. This paper presents a comprehensive overview of the current research on GWHPs and discusses the benefits and limitations of their diffusion in Italy. The sources used provide information on and examples of the correct methodological approaches for depicting the induced variations while avoiding the overestimation or underestimation of the impact that GWHPs have on exploited aquifers.

Suggested Citation

  • Martina Gizzi & Federico Vagnon & Glenda Taddia & Stefano Lo Russo, 2023. "A Review of Groundwater Heat Pump Systems in the Italian Framework: Technological Potential and Environmental Limits," Energies, MDPI, vol. 16(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4813-:d:1174953
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4813/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dalla Longa, Francesco & Nogueira, Larissa P. & Limberger, Jon & Wees, Jan-Diederik van & van der Zwaan, Bob, 2020. "Scenarios for geothermal energy deployment in Europe," Energy, Elsevier, vol. 206(C).
    2. Bruno Piga & Alessandro Casasso & Francesca Pace & Alberto Godio & Rajandrea Sethi, 2017. "Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs): Rigorous vs. Simplified Models," Energies, MDPI, vol. 10(9), pages 1-19, September.
    3. Trumpy, E. & Botteghi, S. & Caiozzi, F. & Donato, A. & Gola, G. & Montanari, D. & Pluymaekers, M.P.D. & Santilano, A. & van Wees, J.D. & Manzella, A., 2016. "Geothermal potential assessment for a low carbon strategy: A new systematic approach applied in southern Italy," Energy, Elsevier, vol. 103(C), pages 167-181.
    4. Tsagarakis, Konstantinos P. & Efthymiou, Loukia & Michopoulos, Apostolos & Mavragani, Amaryllis & Anđelković, Aleksandar S. & Antolini, Francesco & Bacic, Mario & Bajare, Diana & Baralis, Matteo & Bog, 2020. "A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines," Renewable Energy, Elsevier, vol. 147(P2), pages 2556-2571.
    5. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    6. Feng, Guanhong & Xu, Tianfu & Gherardi, Fabrizio & Jiang, Zhenjiao & Bellani, Stefano, 2017. "Geothermal assessment of the Pisa plain, Italy: Coupled thermal and hydraulic modeling," Renewable Energy, Elsevier, vol. 111(C), pages 416-427.
    7. Marco Taussi & Walter Borghi & Michele Gliaschera & Alberto Renzulli, 2021. "Defining the Shallow Geothermal Heat-Exchange Potential for a Lower Fluvial Plain of the Central Apennines: The Metauro Valley (Marche Region, Italy)," Energies, MDPI, vol. 14(3), pages 1-18, February.
    8. Stefano Santini & Matteo Basilici & Chiara Invernizzi & Danica Jablonska & Stefano Mazzoli & Antonella Megna & Pietro Paolo Pierantoni, 2021. "Controls of Radiogenic Heat and Moho Geometry on the Thermal Setting of the Marche Region (Central Italy): An Analytical 3D Geothermal Model," Energies, MDPI, vol. 14(20), pages 1-18, October.
    9. Casasso, Alessandro & Sethi, Rajandrea, 2015. "Modelling thermal recycling occurring in groundwater heat pumps (GWHPs)," Renewable Energy, Elsevier, vol. 77(C), pages 86-93.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García-Gil, Alejandro & Goetzl, Gregor & Kłonowski, Maciej R. & Borovic, Staša & Boon, David P. & Abesser, Corinna & Janza, Mitja & Herms, Ignasi & Petitclerc, Estelle & Erlström, Mikael & Holecek, Ja, 2020. "Governance of shallow geothermal energy resources," Energy Policy, Elsevier, vol. 138(C).
    2. Manon Bulté & Thierry Duren & Olivier Bouhon & Estelle Petitclerc & Mathieu Agniel & Alain Dassargues, 2021. "Numerical Modeling of the Interference of Thermally Unbalanced Aquifer Thermal Energy Storage Systems in Brussels (Belgium)," Energies, MDPI, vol. 14(19), pages 1-17, September.
    3. Pophillat, William & Attard, Guillaume & Bayer, Peter & Hecht-Méndez, Jozsef & Blum, Philipp, 2020. "Analytical solutions for predicting thermal plumes of groundwater heat pump systems," Renewable Energy, Elsevier, vol. 147(P2), pages 2696-2707.
    4. van der Zwaan, Bob & Lamboo, Sam & Dalla Longa, Francesco, 2021. "Timmermans’ dream: An electricity and hydrogen partnership between Europe and North Africa," Energy Policy, Elsevier, vol. 159(C).
    5. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    6. Simona Adrinek & Mitja Janža & Mihael Brenčič, 2023. "Impact of Open-Loop Systems on Groundwater Temperature in NE Slovenia," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    7. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    8. Marco Taussi & Caterina Gozzi & Orlando Vaselli & Jacopo Cabassi & Matia Menichini & Marco Doveri & Marco Romei & Alfredo Ferretti & Alma Gambioli & Barbara Nisi, 2022. "Contamination Assessment and Temporal Evolution of Nitrates in the Shallow Aquifer of the Metauro River Plain (Adriatic Sea, Italy) after Remediation Actions," IJERPH, MDPI, vol. 19(19), pages 1-24, September.
    9. Epting, Jannis & Böttcher, Fabian & Mueller, Matthias H. & García-Gil, Alejandro & Zosseder, Kai & Huggenberger, Peter, 2020. "City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials," Renewable Energy, Elsevier, vol. 147(P1), pages 751-763.
    10. Francesca Ceglia & Adriano Macaluso & Elisa Marrasso & Carlo Roselli & Laura Vanoli, 2020. "Energy, Environmental, and Economic Analyses of Geothermal Polygeneration System Using Dynamic Simulations," Energies, MDPI, vol. 13(18), pages 1-34, September.
    11. Dorota Chwieduk & Bartosz Chwieduk, 2023. "Application of Heat Pumps in New Housing Estates in Cities Suburbs as an Means of Energy Transformation in Poland," Energies, MDPI, vol. 16(8), pages 1-19, April.
    12. Luka Perković & Domagoj Leko & Amalia Lekić Brettschneider & Hrvoje Mikulčić & Petar S. Varbanov, 2021. "Integration of Photovoltaic Electricity with Shallow Geothermal Systems for Residential Microgrids: Proof of Concept and Techno-Economic Analysis with RES2GEO Model," Energies, MDPI, vol. 14(7), pages 1-21, March.
    13. Makasis, Nikolas & Gu, Xiaoying & Kreitmair, Monika J. & Narsilio, Guillermo A. & Choudhary, Ruchi, 2023. "Geothermal pavements: A city-scale investigation on providing sustainable heating for the city of Cardiff, UK," Renewable Energy, Elsevier, vol. 218(C).
    14. Moore, Kayla R. & Holländer, Hartmut M., 2020. "Feasibility of low-temperature geothermal systems: Considerations of thermal anomalies, geochemistry, and local assets," Applied Energy, Elsevier, vol. 275(C).
    15. Meleddu, Marta & Pulina, Manuela, 2018. "Public spending on renewable energy in Italian regions," Renewable Energy, Elsevier, vol. 115(C), pages 1086-1098.
    16. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Böttcher, Fabian & Casasso, Alessandro & Götzl, Gregor & Zosseder, Kai, 2019. "TAP - Thermal aquifer Potential: A quantitative method to assess the spatial potential for the thermal use of groundwater," Renewable Energy, Elsevier, vol. 142(C), pages 85-95.
    18. Daniilidis, Alexandros & Herber, Rien, 2017. "Salt intrusions providing a new geothermal exploration target for higher energy recovery at shallower depths," Energy, Elsevier, vol. 118(C), pages 658-670.
    19. Jalilinasrabady, Saeid & Tanaka, Toshiaki & Itoi, Ryuichi & Goto, Hiroki, 2021. "Numerical simulation and production prediction assessment of Takigami geothermal reservoir," Energy, Elsevier, vol. 236(C).
    20. Mohd Alsaleh & Xiaohui Wang, 2023. "How Does Information and Communication Technology Affect Geothermal Energy Sustainability?," Sustainability, MDPI, vol. 15(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4813-:d:1174953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.