IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v165y2021ip2p117-126.html
   My bibliography  Save this article

Analysis of operation and energy performance of a heat pump driven by a PV system for space heating of a single family house in polish conditions

Author

Listed:
  • Chwieduk, Bartosz
  • Chwieduk, Dorota

Abstract

The paper analyzes utilization of a PV system driving a heat pump in the low energy house in the Polish climate during winter. Based on meteorological data and technical data for the PV modules the energy output for all hours of the year is calculated. The duration of the heating season and the quantity of energy that must be supplied to the heat pump over all the days of the year to keep the indoor air temperature at a constant level are calculated and an estimate of the time of its operation for every day of the year is made. The share of PV energy and energy from the grid towards the total energy supplied to drive the heat pump is determined. Two cases of PV systems are considered: with batteries and without (but the time of the heat pump operation coincides with the time of the availability of solar radiation). The impact of the PV operation on indices of energy consumption is analyzed according to Polish energy sector rules. The results show that reduction of primary energy consumption is not significant. However, to give a definite answer on reduction of energy consumption a study of the operation over a whole year is needed.

Suggested Citation

  • Chwieduk, Bartosz & Chwieduk, Dorota, 2021. "Analysis of operation and energy performance of a heat pump driven by a PV system for space heating of a single family house in polish conditions," Renewable Energy, Elsevier, vol. 165(P2), pages 117-126.
  • Handle: RePEc:eee:renene:v:165:y:2021:i:p2:p:117-126
    DOI: 10.1016/j.renene.2020.11.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120317675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
    2. Chwieduk, Dorota A., 2017. "Towards modern options of energy conservation in buildings," Renewable Energy, Elsevier, vol. 101(C), pages 1194-1202.
    3. Annunziata, Eleonora & Frey, Marco & Rizzi, Francesco, 2013. "Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe," Energy, Elsevier, vol. 57(C), pages 125-133.
    4. Chwieduk, Dorota, 1996. "Analysis of utilisation of renewable energies as heat sources for heat pumps in building sector in Poland," Renewable Energy, Elsevier, vol. 9(1), pages 720-723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Waldemar Izdebski & Katarzyna Kosiorek, 2023. "Analysis and Evaluation of the Possibility of Electricity Production from Small Photovoltaic Installations in Poland," Energies, MDPI, vol. 16(2), pages 1, January.
    2. Dorota Chwieduk & Bartosz Chwieduk, 2023. "Application of Heat Pumps in New Housing Estates in Cities Suburbs as an Means of Energy Transformation in Poland," Energies, MDPI, vol. 16(8), pages 1-19, April.
    3. Qu, Minglu & Yan, Xufeng & Wang, Haiyang & Hei, Yingxiao & Liu, Hongzhi & Li, Zhao, 2022. "Energy, exergy, economic and environmental analysis of photovoltaic/thermal integrated water source heat pump water heater," Renewable Energy, Elsevier, vol. 194(C), pages 1084-1097.
    4. Gao, Datong & Kwan, Trevor Hocksun & Hu, Maobin & Pei, Gang, 2022. "The energy, exergy, and techno-economic analysis of a solar seasonal residual energy utilization system," Energy, Elsevier, vol. 248(C).
    5. Hosseinnia, Seyed Mojtaba & Sorin, Mikhail, 2022. "Energy targeting approach for optimum solar assisted ground source heat pump integration in buildings," Energy, Elsevier, vol. 248(C).
    6. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    7. Jacek Kasperski & Anna Bać & Oluwafunmilola Oladipo, 2023. "A Simulation of a Sustainable Plus-Energy House in Poland Equipped with a Photovoltaic Powered Seasonal Thermal Storage System," Sustainability, MDPI, vol. 15(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caliskan, Hakan, 2015. "Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1016-1034.
    2. Yang, Jiangming & Wu, Huijun & Xu, Xinhua & Huang, Gongsheng & Xu, Tao & Guo, Sitong & Liang, Yuying, 2019. "Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency," Renewable Energy, Elsevier, vol. 138(C), pages 445-457.
    3. Cinzia Buratti & Francesco Asdrubali & Domenico Palladino & Antonella Rotili, 2015. "Energy Performance Database of Building Heritage in the Region of Umbria, Central Italy," Energies, MDPI, vol. 8(7), pages 1-18, July.
    4. repec:ces:ifodic:v:11:y:2013:i:2:p:19094737 is not listed on IDEAS
    5. Olsthoorn, Mark & Schleich, Joachim & Faure, Corinne, 2019. "Exploring the diffusion of low-energy houses: An empirical study in the European Union," Energy Policy, Elsevier, vol. 129(C), pages 1382-1393.
    6. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
    7. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    8. Seungjun Roh & Sungho Tae & Rakhyun Kim, 2018. "Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    9. Dorota Chwieduk & Bartosz Chwieduk, 2023. "Application of Heat Pumps in New Housing Estates in Cities Suburbs as an Means of Energy Transformation in Poland," Energies, MDPI, vol. 16(8), pages 1-19, April.
    10. Amjad Ali & Marc Audi & Ismail Senturk & Yannick Roussel, 2022. "Do Sectoral Growth Promote CO2 Emissions in Pakistan? Time Series Analysis in Presence of Structural Break," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 410-425, March.
    11. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Fabio Magrassi & Adriana Del Borghi & Michela Gallo & Carlo Strazza & Michela Robba, 2016. "Optimal Planning of Sustainable Buildings: Integration of Life Cycle Assessment and Optimization in a Decision Support System (DSS)," Energies, MDPI, vol. 9(7), pages 1-15, June.
    13. Lin, Wenye & Ma, Zhenjun, 2016. "Using Taguchi-Fibonacci search method to optimize phase change materials enhanced buildings with integrated solar photovoltaic thermal collectors," Energy, Elsevier, vol. 106(C), pages 23-37.
    14. Xueliang Yuan & Xiaoyu Zhang & Jiaxin Liang & Qingsong Wang & Jian Zuo, 2017. "The Development of Building Energy Conservation in China: A Review and Critical Assessment from the Perspective of Policy and Institutional System," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    15. Said, Zafar & Arora, Sahil & Bellos, Evangelos, 2018. "A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 302-316.
    16. Gliedt, Travis & Hoicka, Christina E., 2015. "Energy upgrades as financial or strategic investment? Energy Star property owners and managers improving building energy performance," Applied Energy, Elsevier, vol. 147(C), pages 430-443.
    17. Makram El-Shagi & Claus Michelsen & Sebastian Rosenschon, 2014. "Regulation, Innovation and Technology Diffusion: Evidence from Building Energy Efficiency Standards in Germany," Discussion Papers of DIW Berlin 1371, DIW Berlin, German Institute for Economic Research.
    18. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    19. Sara Sewastianik & Andrzej Gajewski, 2020. "Energetic and Ecologic Heat Pumps Evaluation in Poland," Energies, MDPI, vol. 13(18), pages 1-17, September.
    20. Berardi, Umberto, 2013. "Stakeholders’ influence on the adoption of energy-saving technologies in Italian homes," Energy Policy, Elsevier, vol. 60(C), pages 520-530.
    21. Fabrizio Battisti & Orazio Campo, 2021. "The Assessment of Density Bonus in Building Renovation Interventions. The Case of the City of Florence in Italy," Land, MDPI, vol. 10(12), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:165:y:2021:i:p2:p:117-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.