Author
Listed:
- Jakub Szymiczek
(Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)
- Krzysztof Szczotka
(Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)
- Piotr Michalak
(Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)
Abstract
The use of renewables in heat production requires methods to overcome the issue of asynchronous heat load and energy production. The most effective method for analyzing the intricate thermal dynamics of an existing building is through transient simulation, utilizing real-world weather data. This approach offers a far more nuanced understanding than static calculations, which often fail to capture the dynamic interplay of environmental factors and building performance. Transient simulations, by their nature, model the building’s thermal behavior over time, reflecting the continuous fluctuations in temperature, solar radiation, and wind speed. Leveraging actual meteorological data enables the simulation model to faithfully capture system dynamics under realistic operational scenarios. This is crucial for evaluating the effectiveness of heating, ventilation, and air conditioning (HVAC) systems, identifying potential energy inefficiencies, and assessing the impact of various energy-saving measures. The simulation can reveal how the building’s thermal mass absorbs and releases heat, how solar gains influence indoor temperatures, and how ventilation patterns affect heat losses. In this paper, a household heating system consisting of an air source heat pump, PV, and buffer tank is simulated and analyzed. The 3D model accurately represents the building’s geometry and thermal properties. This virtual representation serves as the basis for calculating heat losses and gains, considering factors such as insulation levels, window characteristics, and building orientation. The approach is based on the calculation of building heat load based on a 3D model and EN ISO 52016-1 standard. The heat load is modeled based on air temperature and sun irradiance. The heating system is modeled in EBSILON professional 16.00 software for the calculation of transient 10 min time step heat production during the heating season. The results prove that a buffer tank with the right heat production control system can efficiently increase the auto consumption of self-produced PV electric energy, leading to a reduction in environmental effects and higher economic profitability.
Suggested Citation
Jakub Szymiczek & Krzysztof Szczotka & Piotr Michalak, 2025.
"Simulation of Heat Pump with Heat Storage and PV System—Increase in Self-Consumption in a Polish Household,"
Energies, MDPI, vol. 18(9), pages 1-25, May.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:9:p:2325-:d:1648221
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2325-:d:1648221. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.