IDEAS home Printed from
   My bibliography  Save this article

Endemic Water and Storm Trash to energy via in-situ processing


  • Peng, Valerie
  • Slocum, Alexander


Significant capital is spent removing and disposing of biomass detritus produced by natural disasters and invasive species infestations. This presents an opportunity to turn the cleanup of these endemic wastes into cost-effective, sustainable bioenergy. Using hurricane debris and invasive water hyacinth as case studies, the results of the presented analysis show that carefully designed, relocatable biofuel facilities that produce energy from biowaste can be cost-competitive and carbon-negative compared to status quo baselines. Techno-economic and carbon accounting analyses show that bioenergy can be economical and sustainable over a range of debris scenarios and facility parameters. Transportation modeling shows that by integrating collection, volume reduction, and transportation, delivered feedstock costs can be reduced by 30–87% compared to status quo costs. For the case of hurricane debris, electricity from biomass boilers and pyrolysis generators with 70% capital utilization are competitive with diesel generators at 4 MW and 1.5 MW scales, respectively. For water hyacinth, anaerobic digestion paired with a harvester that gathers, crushes, and bags plants directly on the water could produce useful heat for a net profit of $9/GJ while offsetting 3 tons CO2e per GJ. Ultimately, the present work shows that careful design and evaluation of bioenergy systems could enable an endemic Water and Storm Trash to Energy Via In situ Processing (WASTE VIP) system that reduces cleanup costs, increases energy security, and converts costly biomass waste into cleaner, cheaper energy.

Suggested Citation

  • Peng, Valerie & Slocum, Alexander, 2020. "Endemic Water and Storm Trash to energy via in-situ processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:rensus:v:134:y:2020:i:c:s136403212030561x
    DOI: 10.1016/j.rser.2020.110272

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Mengistu, M.G. & Simane, B. & Eshete, G. & Workneh, T.S., 2015. "A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 306-316.
    2. Zhu, Yunhua & Biddy, Mary J. & Jones, Susanne B. & Elliott, Douglas C. & Schmidt, Andrew J., 2014. "Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading," Applied Energy, Elsevier, vol. 129(C), pages 384-394.
    3. Tsapekos, P. & Kougias, P.G. & Egelund, H. & Larsen, U. & Pedersen, J. & Trénel, P. & Angelidaki, I., 2017. "Mechanical pretreatment at harvesting increases the bioenergy output from marginal land grasses," Renewable Energy, Elsevier, vol. 111(C), pages 914-921.
    4. Toman,Michael A. & Bluffstone,Randall, 2017. "Challenges in assessing the costs of household cooking energy in lower-income countries," Policy Research Working Paper Series 8008, The World Bank.
    5. Thakur, Amit & Canter, Christina E. & Kumar, Amit, 2014. "Life-cycle energy and emission analysis of power generation from forest biomass," Applied Energy, Elsevier, vol. 128(C), pages 246-253.
    6. Kim, Young-Doo & Yang, Chang-Won & Kim, Beom-Jong & Moon, Ji-Hong & Jeong, Jae-Yong & Jeong, Soo-Hwa & Lee, See-Hoon & Kim, Jae-Ho & Seo, Myung-Won & Lee, Sang-Bong & Kim, Jae-Kon & Lee, Uen-Do, 2016. "Fischer–tropsch diesel production and evaluation as alternative automotive fuel in pilot-scale integrated biomass-to-liquid process," Applied Energy, Elsevier, vol. 180(C), pages 301-312.
    7. Campbell, Robert M. & Anderson, Nathaniel M. & Daugaard, Daren E. & Naughton, Helen T., 2018. "Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 330-343.
    8. Dimitriou, Ioanna & Goldingay, Harry & Bridgwater, Anthony V., 2018. "Techno-economic and uncertainty analysis of Biomass to Liquid (BTL) systems for transport fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 160-175.
    9. Sanchez, Daniel L. & Callaway, Duncan S., 2016. "Optimal scale of carbon-negative energy facilities," Applied Energy, Elsevier, vol. 170(C), pages 437-444.
    10. Rezania, Shahabaldin & Md Din, Mohd Fadhil & Kamaruddin, Siti Fatimah & Taib, Shazwin Mat & Singh, Lakhveer & Yong, Ee Ling & Dahalan, Farrah Aini, 2016. "Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production," Energy, Elsevier, vol. 111(C), pages 768-773.
    11. McIlveen-Wright, David R. & Huang, Ye & Rezvani, Sina & Redpath, David & Anderson, Mark & Dave, Ashok & Hewitt, Neil J., 2013. "A technical and economic analysis of three large scale biomass combustion plants in the UK," Applied Energy, Elsevier, vol. 112(C), pages 396-404.
    12. Elisabeth Dresen & Ben DeVries & Martin Herold & Louis Verchot & Robert Müller, 2014. "Fuelwood Savings and Carbon Emission Reductions by the Use of Improved Cooking Stoves in an Afromontane Forest, Ethiopia," Land, MDPI, vol. 3(3), pages 1-21, September.
    13. World Bank, 2019. "The Power of Dung," World Bank Publications - Reports 31716, The World Bank Group.
    14. Agbor, Ezinwa & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2016. "Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas," Applied Energy, Elsevier, vol. 169(C), pages 433-449.
    15. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
    16. Bo Liu & Deepak Rajagopal, 2019. "Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States," Nature Energy, Nature, vol. 4(8), pages 700-708, August.
    17. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    18. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    19. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    20. Gerssen-Gondelach, S.J. & Saygin, D. & Wicke, B. & Patel, M.K. & Faaij, A.P.C., 2014. "Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 964-998.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Wang, Zekai & Ding, Tao & Jia, Wenhao & Huang, Can & Mu, Chenggang & Qu, Ming & Shahidehpour, Mohammad & Yang, Yongheng & Blaabjerg, Frede & Li, Li & Wang, Kang & Chi, Fangde, 2022. "Multi-stage stochastic programming for resilient integrated electricity and natural gas distribution systems against typhoon natural disaster attacks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gebrehiwot, Kiflom & Mondal, Md. Alam Hossain & Ringler, Claudia & Gebremeskel, Abiti Getaneh, 2019. "Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia," Energy, Elsevier, vol. 177(C), pages 234-246.
    2. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    5. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    7. Nie, Yuhao & Bi, Xiaotao T., 2018. "Techno-economic assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia," Energy, Elsevier, vol. 153(C), pages 464-475.
    8. Yi, Qun & Zhao, Yingjie & Huang, Yi & Wei, Guoqiang & Hao, Yanhong & Feng, Jie & Mohamed, Usama & Pourkashanian, Mohamed & Nimmo, William & Li, Wenying, 2018. "Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom," Applied Energy, Elsevier, vol. 225(C), pages 258-272.
    9. Dossow, Marcel & Dieterich, Vincent & Hanel, Andreas & Spliethoff, Hartmut & Fendt, Sebastian, 2021. "Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Mohd Idris, Muhammad Nurariffudin & Leduc, Sylvain & Yowargana, Ping & Hashim, Haslenda & Kraxner, Florian, 2021. "Spatio-temporal assessment of the impact of intensive palm oil-based bioenergy deployment on cross-sectoral energy decarbonization," Applied Energy, Elsevier, vol. 285(C).
    11. Girum Ayalneh Tiruye & Abreham Tesfaye Besha & Yedilfana Setarge Mekonnen & Natei Ermias Benti & Gebrehiwet Abrham Gebreslase & Ramato Ashu Tufa, 2021. "Opportunities and Challenges of Renewable Energy Production in Ethiopia," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    12. LaFave, Daniel & Beyene, Abebe Damte & Bluffstone, Randall & Dissanayake, Sahan T.M. & Gebreegziabher, Zenebe & Mekonnen, Alemu & Toman, Michael, 2021. "Impacts of improved biomass cookstoves on child and adult health: Experimental evidence from rural Ethiopia," World Development, Elsevier, vol. 140(C).
    13. Randall Bluffstone & Abebe D. Beyene & Zenebe Gebreegziabher & Peter Martinsson & Alemu Mekonnen & Michael Toman, 2022. "Experience and Learning with Improved Technologies: Evidence from Improved Biomass Cookstoves in Ethiopia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(2), pages 271-285, February.
    14. Gebeyanesh Zerssa & Debela Feyssa & Dong-Gill Kim & Bettina Eichler-Löbermann, 2021. "Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture," Agriculture, MDPI, vol. 11(3), pages 1-26, February.
    15. Wassie, Yibeltal T. & Adaramola, Muyiwa S., 2019. "Potential environmental impacts of small-scale renewable energy technologies in East Africa: A systematic review of the evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 377-391.
    16. Karanja, Alice & Gasparatos, Alexandros, 2019. "Adoption and impacts of clean bioenergy cookstoves in Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 285-306.
    17. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    18. Lin, Cherng-Yuan & Lu, Cherie, 2021. "Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    19. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    20. Shane, Agabu & Gheewala, Shabbir H. & Kafwembe, Young, 2017. "Urban commercial biogas power plant model for Zambian towns," Renewable Energy, Elsevier, vol. 103(C), pages 1-14.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:134:y:2020:i:c:s136403212030561x. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.