IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223022934.html
   My bibliography  Save this article

A feasibility analysis of PV-based off-grid rural electrification for a pastoral settlement in Ethiopia

Author

Listed:
  • Kuno, Amanuel Kachiko
  • Begna, Nafbek
  • Mebratu, Fisaha

Abstract

Ethiopia’s electric grid relies mostly on hydropower for electricity generation. Compared to metropolitan regions, rural areas have only 5% access to power, and 83% of remote areas rely on traditional biomass energy for lighting and cooking. Close to 60% of the land area in Ethiopia is pastoral, and electrifying from the main grid is a major challenge due to economic, technical, and nomadic reasons. This paper explores the feasibility analysis, design, and simulation of an off-grid solar Photovoltaic system in addition to discussing the complete engagement of national energy policy and a strategic plan for electrifying a pastoral Communities’ in Borena. Using solar radiation base data from the National Aeronautics and Space Administration, a case study is performed at Moyale, Yabelo, and Dire, which have 454 households, 367 households, and 379 households, respectively. Through the HOMER software simulation, the optimization determines the inverter, battery size and number, and solar array’s capacity. The daily energy usage and peak power demand in the pastoral communities of Moyale, Yabelo, and Dire were 498.102 kWh/day, 447.114 kWh/day, and 454.02 kWh/day, or 36.89 kW, 35.41 kW, and 35.68 kW, respectively. Due to the country’s subsidizing of all clean energy costs, off-grid solar Photovoltaic systems are more economically feasible than diesel generators, which have a level cost of electricity of 0.4 US$/kWh. National energy strategic plans and policies ultimately support the full involvement of off-grid solar Photovoltaic electrification at remote sites.

Suggested Citation

  • Kuno, Amanuel Kachiko & Begna, Nafbek & Mebratu, Fisaha, 2023. "A feasibility analysis of PV-based off-grid rural electrification for a pastoral settlement in Ethiopia," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022934
    DOI: 10.1016/j.energy.2023.128899
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223022934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Misato Sato & Gregor Singer & Damien Dussaux & Stefania Lovo, 2015. "International and sectoral variation in energy prices 1995-2011: how does it relate to emissions policy stringency?," GRI Working Papers 187, Grantham Research Institute on Climate Change and the Environment.
    2. Solomon Feleke & Degarege Anteneh & Balamurali Pydi & Raavi Satish & Adel El-Shahat & Almoataz Y. Abdelaziz, 2023. "Feasibility and Potential Assessment of Solar Resources: A Case Study in North Shewa Zone, Amhara, Ethiopia," Energies, MDPI, vol. 16(6), pages 1-15, March.
    3. Negash, Martha & Riera, Olivia, 2014. "Biodiesel value chain and access to energy in Ethiopia: Policies and business prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 975-985.
    4. Baurzhan, Saule & Jenkins, Glenn P., 2016. "Off-grid solar PV: Is it an affordable or appropriate solution for rural electrification in Sub-Saharan African countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1405-1418.
    5. Karekezi, Stephen & Kithyoma, Waeni, 2002. "Renewable energy strategies for rural Africa: is a PV-led renewable energy strategy the right approach for providing modern energy to the rural poor of sub-Saharan Africa?," Energy Policy, Elsevier, vol. 30(11-12), pages 1071-1086, September.
    6. Gebreslassie, Mulualem G. & Bahta, Solomon T., 2023. "Ethiopia needs peace to accelerate its SDG 7 achievements," World Development Perspectives, Elsevier, vol. 30(C).
    7. Kebede, Kassahun Y. & Mitsufuji, Toshio, 2017. "Technological innovation system building for diffusion of renewable energy technology: A case of solar PV systems in Ethiopia," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 242-253.
    8. Amr Zeedan & Abdulaziz Barakeh & Khaled Al-Fakhroo & Farid Touati & Antonio S. P. Gonzales, 2021. "Quantification of PV Power and Economic Losses Due to Soiling in Qatar," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    9. Mondal, Md. Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Rosegrant, Mark, 2017. "Ethiopian power sector development: Renewable based universal electricity access and export strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 11-20.
    10. Wamukonya, Njeri, 2007. "Solar home system electrification as a viable technology option for Africa's development," Energy Policy, Elsevier, vol. 35(1), pages 6-14, January.
    11. Karekezi, Stephen & Kimani, John, 2002. "Status of power sector reform in Africa: impact on the poor," Energy Policy, Elsevier, vol. 30(11-12), pages 923-945, September.
    12. Anton Eberhard & Orvika Rosnes & Maria Shkaratan & Haakon Vennemo, 2011. "Africa's Power Infrastructure : Investment, Integration, Efficiency," World Bank Publications - Books, The World Bank Group, number 2290, December.
    13. Mengistu, M.G. & Simane, B. & Eshete, G. & Workneh, T.S., 2015. "A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 306-316.
    14. Barrie, Jack & Cruickshank, Heather J., 2017. "Shedding light on the last mile: A study on the diffusion of Pay As You Go Solar Home Systems in Central East Africa," Energy Policy, Elsevier, vol. 107(C), pages 425-436.
    15. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    16. Emran Aljdaeh & Innocent Kamwa & Waleed Hammad & Mohammed I. Abuashour & Tha’er Sweidan & Haris M. Khalid & S. M. Muyeen, 2021. "Performance Enhancement of Self-Cleaning Hydrophobic Nanocoated Photovoltaic Panels in a Dusty Environment," Energies, MDPI, vol. 14(20), pages 1-18, October.
    17. Gebrehiwot, Kiflom & Mondal, Md. Alam Hossain & Ringler, Claudia & Gebremeskel, Abiti Getaneh, 2019. "Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia," Energy, Elsevier, vol. 177(C), pages 234-246.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mugisha, Joshua & Ratemo, Mike Arasa & Bunani Keza, Bienvenu Christian & Kahveci, Hayriye, 2021. "Assessing the opportunities and challenges facing the development of off-grid solar systems in Eastern Africa: The cases of Kenya, Ethiopia, and Rwanda," Energy Policy, Elsevier, vol. 150(C).
    2. Girum Ayalneh Tiruye & Abreham Tesfaye Besha & Yedilfana Setarge Mekonnen & Natei Ermias Benti & Gebrehiwet Abrham Gebreslase & Ramato Ashu Tufa, 2021. "Opportunities and Challenges of Renewable Energy Production in Ethiopia," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    3. Baurzhan, Saule & Jenkins, Glenn P., 2016. "Off-grid solar PV: Is it an affordable or appropriate solution for rural electrification in Sub-Saharan African countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1405-1418.
    4. Thomas, P.J.M. & Sandwell, P. & Williamson, S.J. & Harper, P.W., 2021. "A PESTLE analysis of solar home systems in refugee camps in Rwanda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Brunet, Carole & Savadogo, Oumarou & Baptiste, Pierre & Bouchard, Michel A., 2018. "Shedding some light on photovoltaic solar energy in Africa – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 325-342.
    6. Pillot, Benjamin & Muselli, Marc & Poggi, Philippe & Dias, João Batista, 2019. "Historical trends in global energy policy and renewable power system issues in Sub-Saharan Africa: The case of solar PV," Energy Policy, Elsevier, vol. 127(C), pages 113-124.
    7. Javadi, F.S. & Rismanchi, B. & Sarraf, M. & Afshar, O. & Saidur, R. & Ping, H.W. & Rahim, N.A., 2013. "Global policy of rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 402-416.
    8. Gebrehiwot, Kiflom & Mondal, Md. Alam Hossain & Ringler, Claudia & Gebremeskel, Abiti Getaneh, 2019. "Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia," Energy, Elsevier, vol. 177(C), pages 234-246.
    9. Valer, L. Roberto & Manito, Alex. R.A. & Ribeiro, Tina B. Selles & Zilles, Roberto & Pinho, João T., 2017. "Issues in PV systems applied to rural electrification in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1033-1043.
    10. Peng, Valerie & Slocum, Alexander, 2020. "Endemic Water and Storm Trash to energy via in-situ processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Labordena, Mercè & Patt, Anthony & Bazilian, Morgan & Howells, Mark & Lilliestam, Johan, 2017. "Impact of political and economic barriers for concentrating solar power in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 102(C), pages 52-72.
    12. Diallo, Arouna & Moussa, Richard K., 2020. "The effects of solar home system on welfare in off-grid areas: Evidence from Côte d’Ivoire," Energy, Elsevier, vol. 194(C).
    13. Brew-Hammond, Abeeku, 2010. "Energy access in Africa: Challenges ahead," Energy Policy, Elsevier, vol. 38(5), pages 2291-2301, May.
    14. Berhanu, Mesfin & Jabasingh, S. Anuradha & Kifile, Zebene, 2017. "Expanding sustenance in Ethiopia based on renewable energy resources – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1035-1045.
    15. Ioannis Pappis & Andreas Sahlberg & Tewodros Walle & Oliver Broad & Elusiyan Eludoyin & Mark Howells & Will Usher, 2021. "Influence of Electrification Pathways in the Electricity Sector of Ethiopia—Policy Implications Linking Spatial Electrification Analysis and Medium to Long-Term Energy Planning," Energies, MDPI, vol. 14(4), pages 1-36, February.
    16. Stergios Emmanouil & Jason Philhower & Sophie Macdonald & Fahad Khan Khadim & Meijian Yang & Ezana Atsbeha & Himaja Nagireddy & Natalie Roach & Elizabeth Holzer & Emmanouil N. Anagnostou, 2021. "A Comprehensive Approach to the Design of a Renewable Energy Microgrid for Rural Ethiopia: The Technical and Social Perspectives," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    17. Tefera Mekonnen & Ramchandra Bhandari & Venkata Ramayya, 2021. "Modeling, Analysis and Optimization of Grid-Integrated and Islanded Solar PV Systems for the Ethiopian Residential Sector: Considering an Emerging Utility Tariff Plan for 2021 and Beyond," Energies, MDPI, vol. 14(11), pages 1-24, June.
    18. Eberhard, Anton & Gratwick, Katharine & Kariuki, Laban, 2018. "Kenya's lessons from two decades of experience with independent power producers," Utilities Policy, Elsevier, vol. 52(C), pages 37-49.
    19. Barry, Mamadou Saliou & Creti, Anna, 2020. "Pay-as-you-go contracts for electricity access: Bridging the “last mile” gap? A case study in Benin," Energy Economics, Elsevier, vol. 90(C).
    20. Gabisa, Elias W. & Gheewala, Shabbir H., 2020. "Can substitution of imported gasoline by locally produced molasses ethanol in Ethiopia be sustainable? An eco-efficiency assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.