IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2681-d1095967.html
   My bibliography  Save this article

Feasibility and Potential Assessment of Solar Resources: A Case Study in North Shewa Zone, Amhara, Ethiopia

Author

Listed:
  • Solomon Feleke

    (Department of Electrical and Computer Engineering, Debre Berhan University, Debre Berhan 445, Ethiopia)

  • Degarege Anteneh

    (Department of Electrical and Computer Engineering, Debre Berhan University, Debre Berhan 445, Ethiopia)

  • Balamurali Pydi

    (Department of Electrical & Electronics Engineering, Aditya Institute of Technology & Management, Tekkali 532201, Andhra Pradesh, India)

  • Raavi Satish

    (Department of Electrical & Electronics Engineering, Anil Neerukonda Institute of Technology and Science, Visakhapatnam 531162, Andhra Pradesh, India)

  • Adel El-Shahat

    (Energy Technology Program, School of Engineering Technology, Purdue University, West Lafayette, IN 47906, USA)

  • Almoataz Y. Abdelaziz

    (Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt)

Abstract

The feasibility and potential assessment (PA) of solar PV energy is one of the key factors in identifying the most promising areas for the installation of solar PV stations. It determines the useful energy generated in the given area. This paper assesses the solar energy distribution and PA in the North Shewa administration zone. Based on the data collected and analysis made, it is found that more than 80% of the North Shewa areas are suitable for the solar energy generation for off-grid and on-grid systems. Hence, the solar potential of the North Shewa zone completely fulfills the standards of sunshine, solar radiation, and temperature. That is, most of the areas have solar radiation of 5.2 kWh/m 2 , and daily sunshine is greater than 7 h. The maximum energy production is found in December in Shewa Robit, Mehal Meda, Eneware, Debre Berhan, Alem Ketema, and Sela Dengay with 175.35 kWh, 188.18 kWh, 180.78 kWh, 189.54 kWh, 175.78 kWh, and 189.63 kWh, respectively. This is a good opportunity for investors to invest in solar PV electricity generation. It will solve the issue of electricity supply to the community, which currently relies on wood and fossil fuels. It also highlights the positive opportunities for the future implementation of solar energy.

Suggested Citation

  • Solomon Feleke & Degarege Anteneh & Balamurali Pydi & Raavi Satish & Adel El-Shahat & Almoataz Y. Abdelaziz, 2023. "Feasibility and Potential Assessment of Solar Resources: A Case Study in North Shewa Zone, Amhara, Ethiopia," Energies, MDPI, vol. 16(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2681-:d:1095967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nacer, T. & Hamidat, A. & Nadjemi, O. & Bey, M., 2016. "Feasibility study of grid connected photovoltaic system in family farms for electricity generation in rural areas," Renewable Energy, Elsevier, vol. 96(PA), pages 305-318.
    2. Kamel Guedri & Mohamed Salem & Mamdouh El Haj Assad & Jaroon Rungamornrat & Fatimah Malek Mohsen & Yonis M. Buswig, 2022. "PV/Thermal as Promising Technologies in Buildings: A Comprehensive Review on Exergy Analysis," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    3. Gabriele Lobaccaro & Malgorzata Maria Lisowska & Erika Saretta & Pierluigi Bonomo & Francesco Frontini, 2019. "A Methodological Analysis Approach to Assess Solar Energy Potential at the Neighborhood Scale," Energies, MDPI, vol. 12(18), pages 1-28, September.
    4. Demsew Mitiku Teferra, 2017. "Potential and feasibility study of standalone solar PV/wind/biogas and biodiesel hybrid electric supply system in Ethiopia," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 13(4), pages 368-377.
    5. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    6. Mugisha, Joshua & Ratemo, Mike Arasa & Bunani Keza, Bienvenu Christian & Kahveci, Hayriye, 2021. "Assessing the opportunities and challenges facing the development of off-grid solar systems in Eastern Africa: The cases of Kenya, Ethiopia, and Rwanda," Energy Policy, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuno, Amanuel Kachiko & Begna, Nafbek & Mebratu, Fisaha, 2023. "A feasibility analysis of PV-based off-grid rural electrification for a pastoral settlement in Ethiopia," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    2. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.
    3. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    4. Paul Plachinda & Julia Morgan & Maria Coelho, 2022. "Towards Net Zero: Modeling Approach to the Right-Sized Facilities," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    5. Hernández-Escobedo, Q. & Fernández-García, A. & Manzano-Agugliaro, F., 2017. "Solar resource assessment for rural electrification and industrial development in the Yucatan Peninsula (Mexico)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1550-1561.
    6. Best, Rohan, 2023. "Assets power solar and battery uptake in Kenya," Energy Economics, Elsevier, vol. 123(C).
    7. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Mohammed, Mohd Fayzul & Ramli, Makbul A.M., 2020. "Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq," Energy, Elsevier, vol. 191(C).
    8. Arnulf Jäger-Waldau, 2020. "The Untapped Area Potential for Photovoltaic Power in the European Union," Clean Technol., MDPI, vol. 2(4), pages 1-7, October.
    9. Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    10. Matteo Formolli & Gabriele Lobaccaro & Jouri Kanters, 2021. "Solar Energy in the Nordic Built Environment: Challenges, Opportunities and Barriers," Energies, MDPI, vol. 14(24), pages 1-18, December.
    11. Kumar, Jitendra & Suryakiran, B.V. & Verma, Ashu & Bhatti, T.S., 2019. "Analysis of techno-economic viability with demand response strategy of a grid-connected microgrid model for enhanced rural electrification in Uttar Pradesh state, India," Energy, Elsevier, vol. 178(C), pages 176-185.
    12. Bélaïd, Fateh & Youssef, Meriem, 2017. "Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria," Energy Policy, Elsevier, vol. 102(C), pages 277-287.
    13. Breen, M. & Upton, J. & Murphy, M.D., 2020. "Photovoltaic systems on dairy farms: Financial and renewable multi-objective optimization (FARMOO) analysis," Applied Energy, Elsevier, vol. 278(C).
    14. Thebault, Martin & Desthieux, Gilles & Castello, Roberto & Berrah, Lamia, 2022. "Large-scale evaluation of the suitability of buildings for photovoltaic integration: Case study in Greater Geneva," Applied Energy, Elsevier, vol. 316(C).
    15. Bushra, Nayab, 2022. "A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Yunis Ali Ahmed & Ammar Rashid & Muhammad Mahboob Khurshid, 2022. "Investigating the Determinants of the Adoption of Solar Photovoltaic Systems—Citizen’s Perspectives of Two Developing Countries," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    17. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    18. Le Phuong Truong & Hoang An Quoc & Huan-Liang Tsai & Do Van Dung, 2020. "A Method to Estimate and Analyze the Performance of a Grid-Connected Photovoltaic Power Plant," Energies, MDPI, vol. 13(10), pages 1-17, May.
    19. Sanni, Shereefdeen Oladapo & Oricha, Joseph Yakubu & Oyewole, Taoheed Oluwafemi & Bawonda, Femi Ikotoni, 2021. "Analysis of backup power supply for unreliable grid using hybrid solar PV/diesel/biogas system," Energy, Elsevier, vol. 227(C).
    20. Antonio José Steidle Neto & Daniela de Carvalho Lopes, 2021. "Technical analysis of photovoltaic energy generation for supplying the electricity demand in Brazilian dairy farms," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1355-1370, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2681-:d:1095967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.