IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8201-d962108.html
   My bibliography  Save this article

Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems

Author

Listed:
  • Mahmoud Dhimish

    (Laboratory of Photovoltaics, School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK)

  • Pavlos I. Lazaridis

    (Department of Engineering and Technology, University of Huddersfield, Huddersfield HD1 3DH, UK)

Abstract

In recent years, a determined shading ratio of photovoltaic (PV) systems has been broadly reviewed and explained. Observing the shading ratio of PV systems allows us to navigate for PV faults and helps to recognize possible degradation mechanisms. Therefore, this work introduces a novel approximation shading ratio technique using an all-sky imaging system. The proposed solution has the following structure: (i) we determined four all-sky imagers for a region of 25 km 2 , (ii) computed the cloud images using our new proposed model, called color-adjusted (CA), (iii) computed the shading ratio, and (iv) estimated the global horizontal irradiance (GHI) and consequently, obtained the predicted output power of the PV system. The estimation of the GHI was empirically compared with captured data from two different weather stations; we found that the average accuracy of the proposed technique was within a maximum ±12.7% error rate. In addition, the PV output power approximation accuracy was as high as 97.5% when the shading was zero and reduced to the lowest value of 83% when overcasting conditions affected the examined PV system.

Suggested Citation

  • Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8201-:d:962108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos Olalla & Md. Nazmul Hasan & Chris Deline & Dragan Maksimović, 2018. "Mitigation of Hot-Spots in Photovoltaic Systems Using Distributed Power Electronics," Energies, MDPI, vol. 11(4), pages 1-16, March.
    2. Cristian Crisosto & Martin Hofmann & Riyad Mubarak & Gunther Seckmeyer, 2018. "One-Hour Prediction of the Global Solar Irradiance from All-Sky Images Using Artificial Neural Networks," Energies, MDPI, vol. 11(11), pages 1-16, October.
    3. Zhaoxuan Li & SM Mahbobur Rahman & Rolando Vega & Bing Dong, 2016. "A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting," Energies, MDPI, vol. 9(1), pages 1-12, January.
    4. Maria I. S. Guerra & Fábio M. Ugulino de Araújo & Mahmoud Dhimish & Romênia G. Vieira, 2021. "Assessing Maximum Power Point Tracking Intelligent Techniques on a PV System with a Buck–Boost Converter," Energies, MDPI, vol. 14(22), pages 1-21, November.
    5. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    6. Georgios Goudelis & Pavlos I. Lazaridis & Mahmoud Dhimish, 2022. "A Review of Models for Photovoltaic Crack and Hotspot Prediction," Energies, MDPI, vol. 15(12), pages 1-24, June.
    7. Juan Du & Qilong Min & Penglin Zhang & Jinhui Guo & Jun Yang & Bangsheng Yin, 2018. "Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model," Energies, MDPI, vol. 11(5), pages 1-16, May.
    8. Martin Libra & Milan Daneček & Jan Lešetický & Vladislav Poulek & Jan Sedláček & Václav Beránek, 2019. "Monitoring of Defects of a Photovoltaic Power Plant Using a Drone," Energies, MDPI, vol. 12(5), pages 1-9, February.
    9. Amith Khandakar & Muhammad E. H. Chowdhury & Monzure- Khoda Kazi & Kamel Benhmed & Farid Touati & Mohammed Al-Hitmi & Antonio Jr S. P. Gonzales, 2019. "Machine Learning Based Photovoltaics (PV) Power Prediction Using Different Environmental Parameters of Qatar," Energies, MDPI, vol. 12(14), pages 1-19, July.
    10. Kong, Weicong & Jia, Youwei & Dong, Zhao Yang & Meng, Ke & Chai, Songjian, 2020. "Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting," Applied Energy, Elsevier, vol. 280(C).
    11. Vincenzo Muteri & Maurizio Cellura & Domenico Curto & Vincenzo Franzitta & Sonia Longo & Marina Mistretta & Maria Laura Parisi, 2020. "Review on Life Cycle Assessment of Solar Photovoltaic Panels," Energies, MDPI, vol. 13(1), pages 1-38, January.
    12. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    13. Stavros-Andreas Logothetis & Vasileios Salamalikis & Bijan Nouri & Jan Remund & Luis F. Zarzalejo & Yu Xie & Stefan Wilbert & Evangelos Ntavelis & Julien Nou & Niels Hendrikx & Lennard Visser & Manaji, 2022. "Solar Irradiance Ramp Forecasting Based on All-Sky Imagers," Energies, MDPI, vol. 15(17), pages 1-17, August.
    14. Jaeun Kim & Matheus Rabelo & Siva Parvathi Padi & Hasnain Yousuf & Eun-Chel Cho & Junsin Yi, 2021. "A Review of the Degradation of Photovoltaic Modules for Life Expectancy," Energies, MDPI, vol. 14(14), pages 1-21, July.
    15. Michiel van Noord & Tomas Landelius & Sandra Andersson, 2021. "Snow-Induced PV Loss Modeling Using Production-Data Inferred PV System Models," Energies, MDPI, vol. 14(6), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koo Lee & Sung Bae Cho & Junsin Yi & Hyo Sik Chang, 2022. "Simplified Recovery Process for Resistive Solder Bond (RSB) Hotspots Caused by Poor Soldering of Crystalline Silicon Photovoltaic Modules Using Resin," Energies, MDPI, vol. 15(13), pages 1-19, June.
    2. Logothetis, Stavros-Andreas & Salamalikis, Vasileios & Wilbert, Stefan & Remund, Jan & Zarzalejo, Luis F. & Xie, Yu & Nouri, Bijan & Ntavelis, Evangelos & Nou, Julien & Hendrikx, Niels & Visser, Lenna, 2022. "Benchmarking of solar irradiance nowcast performance derived from all-sky imagers," Renewable Energy, Elsevier, vol. 199(C), pages 246-261.
    3. Chih-Chiang Wei, 2019. "Evaluation of Photovoltaic Power Generation by Using Deep Learning in Solar Panels Installed in Buildings," Energies, MDPI, vol. 12(18), pages 1-18, September.
    4. Carmen Otilia Rusănescu & Marin Rusănescu & Irina Aura Istrate & Gabriel Alexandru Constantin & Mihaela Begea, 2023. "The Effect of Dust Deposition on the Performance of Photovoltaic Panels," Energies, MDPI, vol. 16(19), pages 1-20, September.
    5. Si, Zhiyuan & Yang, Ming & Yu, Yixiao & Ding, Tingting, 2021. "Photovoltaic power forecast based on satellite images considering effects of solar position," Applied Energy, Elsevier, vol. 302(C).
    6. Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
    7. Shitao Wang & Mingjian Sun & Yi Shen, 2022. "Semantic Segmentation Algorithm-Based Calculation of Cloud Shadow Trajectory and Cloud Speed," Energies, MDPI, vol. 15(23), pages 1-15, November.
    8. Tarek Berghout & Mohamed Benbouzid & Toufik Bentrcia & Xiandong Ma & Siniša Djurović & Leïla-Hayet Mouss, 2021. "Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects," Energies, MDPI, vol. 14(19), pages 1-24, October.
    9. Jizhong Xue & Zaohui Kang & Chun Sing Lai & Yu Wang & Fangyuan Xu & Haoliang Yuan, 2023. "Distributed Generation Forecasting Based on Rolling Graph Neural Network (ROLL-GNN)," Energies, MDPI, vol. 16(11), pages 1-18, May.
    10. Woo-Gyun Shin & Ju-Young Shin & Hye-Mi Hwang & Chi-Hong Park & Suk-Whan Ko, 2022. "Power Generation Prediction of Building-Integrated Photovoltaic System with Colored Modules Using Machine Learning," Energies, MDPI, vol. 15(7), pages 1-17, April.
    11. Faris Alqurashi & Rached Nciri & Abdulrahman Alghamdi & Chaouki Ali & Faouzi Nasri, 2022. "Control of the Solar Radiation Reception Rate (SRRR) Using a Novel Poly-Tilted Segmented Panel (PTSP) in the Region of Makkah, Saudi Arabia," Energies, MDPI, vol. 15(7), pages 1-15, March.
    12. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    13. Waqas Ahmed & Jamil Ahmed Sheikh & Shahjadi Hisan Farjana & M. A. Parvez Mahmud, 2021. "Defects Impact on PV System GHG Mitigation Potential and Climate Change," Sustainability, MDPI, vol. 13(14), pages 1-9, July.
    14. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    15. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    16. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.
    17. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    18. Victor Kouloumpis & Antonios Kalogerakis & Anastasia Pavlidou & George Tsinarakis & George Arampatzis, 2020. "Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    19. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    20. Haneen Abuzaid & Fatin Samara, 2022. "Environmental and Economic Impact Assessments of a Photovoltaic Rooftop System in the United Arab Emirates," Energies, MDPI, vol. 15(22), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8201-:d:962108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.