IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v119y2020ics1364032119307336.html
   My bibliography  Save this article

The socio-economic impacts of solar water heaters compared across two communities: A case study of Cato Manor

Author

Listed:
  • Naidoo, A.

Abstract

There has been a global increase in greenhouse gases due to anthropogenic activities such as deforestation and urbanisation. In South Africa, the main source of greenhouse gases is the burning of coal for electricity generation. The South African government has implemented a solar water heater initiative into the Reconstruction and Development Programme, a programme established by the African National Congress government to construct low cost housing for previously disadvantaged citizens. These Reconstruction and Development Programme houses have been retrofitted with solar water heaters as part of an energy-saving initiative which reduces dependency on the grid and provides additional socio-economic benefits to improve the lives of its users. This study examined the socio-economic impacts associated with the use of solar water heaters in low-income households as well as their attitudes and perceptions towards using solar water heaters. The primary data was collected using questionnaires which yielded qualitative and quantitative data. The study area consisted of two low-income communities in South Africa. A holistic understanding of energy use and its impacts on households was gained. The study found that the solar water heaters had a variety of socio-economic impacts such as providing additional monetary savings that could be used towards livelihood strategies and benefits allowing households to spend more time on productive activities. In order to ascertain the community's perception and attitudes towards the technology, statistical analyses were performed. An overall positive perceived performance of the solar water heaters was found, however residences did experience an abundance of negatives.

Suggested Citation

  • Naidoo, A., 2020. "The socio-economic impacts of solar water heaters compared across two communities: A case study of Cato Manor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307336
    DOI: 10.1016/j.rser.2019.109525
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119307336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adom, Philip Kofi, 2015. "Determinants of energy intensity in South Africa: Testing for structural effects in parameters," Energy, Elsevier, vol. 89(C), pages 334-346.
    2. González-Eguino, Mikel, 2015. "Energy poverty: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 377-385.
    3. Sovacool, Benjamin K., 2011. "Conceptualizing urban household energy use: Climbing the "Energy Services Ladder"," Energy Policy, Elsevier, vol. 39(3), pages 1659-1668, March.
    4. Odhiambo, Nicholas M., 2009. "Electricity consumption and economic growth in South Africa: A trivariate causality test," Energy Economics, Elsevier, vol. 31(5), pages 635-640, September.
    5. François Lescaroux, 2012. "Household electricity demand, worldwide: climbing the ‘ladder of needs’," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 36(3), pages 247-271, September.
    6. Akella, A.K. & Saini, R.P. & Sharma, M.P., 2009. "Social, economical and environmental impacts of renewable energy systems," Renewable Energy, Elsevier, vol. 34(2), pages 390-396.
    7. Inglesi-Lotz, R. & Pouris, A., 2012. "Energy efficiency in South Africa: A decomposition exercise," Energy, Elsevier, vol. 42(1), pages 113-120.
    8. Aliyu, Abubakar Kabir & Modu, Babangida & Tan, Chee Wei, 2018. "A review of renewable energy development in Africa: A focus in South Africa, Egypt and Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2502-2518.
    9. Isabel Gutierrez-Montes & Mary Emery & Edith Fernandez-Baca, 2009. "The Sustainable Livelihoods Approach and the Community Capitals Framework: The Importance of System-Level Approaches to Community Change Efforts," Community Development, Taylor & Francis Journals, vol. 40(2), pages 106-113, June.
    10. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    11. Sibonginkosi Mazibuko, 2013. "Understanding underdevelopment through the sustainable livelihoods approach," Community Development, Taylor & Francis Journals, vol. 44(2), pages 173-187, May.
    12. Jebaselvi, G.D. Anbarasi & Paramasivam, S., 2013. "Analysis on renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 625-634.
    13. Winkler, Harald, 2005. "Renewable energy policy in South Africa: policy options for renewable electricity," Energy Policy, Elsevier, vol. 33(1), pages 27-38, January.
    14. Lucy Baker & Peter Newell & Jon Phillips, 2014. "The Political Economy of Energy Transitions: The Case of South Africa," New Political Economy, Taylor & Francis Journals, vol. 19(6), pages 791-818, December.
    15. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    16. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter & Marenya, Paswel, 2017. "A ladder within a ladder: Understanding the factors influencing a household's domestic use of electricity in four African countries," Energy Economics, Elsevier, vol. 66(C), pages 167-181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucas B. Garcia & Fabiana Alves Fiore & Fernando L. C. Carvalho, 2023. "Factors Associated with the Use of Solar Energy in Urban Households - Case Study: Municipality of S o Jos Dos Campos," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 522-530, July.
    2. Huang, Qichen & Liang, Xuechen & Yan, Chongyuan & Liu, Yizhen, 2021. "Review of interface solar-driven steam generation systems: High-efficiency strategies, applications and challenges," Applied Energy, Elsevier, vol. 283(C).
    3. Sinethemba Peter & Njabulo Kambule & Stephen Tangwe & Kowiyou Yessoufou, 2022. "Assessing the Feasibility and the Potential of Implementing Solar Water Heaters in Dimbaza, a Township in Eastern Cape, South Africa," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    4. Sara Ghaboulian Zare & Reza Hafezi & Mohammad Alipour & Reza Parsaei Tabar & Rodney A. Stewart, 2021. "Residential Solar Water Heater Adoption Behaviour: A Review of Economic and Technical Predictors and Their Correlation with the Adoption Decision," Energies, MDPI, vol. 14(20), pages 1-26, October.
    5. Yari, Shahram & Safarzadeh, Habibollah & Bahiraei, Mehdi, 2021. "Experimental study of an absorber coil in spherical solar collector with practical dimensions at different flow rates," Renewable Energy, Elsevier, vol. 180(C), pages 1248-1259.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harrington, Elise & Athavankar, Ameya & Hsu, David, 2020. "Variation in rural household energy transitions for basic lighting in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Ahmed, Abubakari & Gasparatos, Alexandros, 2020. "Multi-dimensional energy poverty patterns around industrial crop projects in Ghana: Enhancing the energy poverty alleviation potential of rural development strategies," Energy Policy, Elsevier, vol. 137(C).
    3. Morgan Bazilian & Patrick Nussbaumer & Hans-Holger Rogner & Abeeku Brew-Hammond & Vivien Foster & Shonali Pachauri & Eric Williams & Mark Howells & Philippe Niyongabo & Lawrence Musaba & Brian Ó Galla, 2011. "Energy Access Scenarios to 2030 for the Power Sector in Sub-Saharan Africa," Working Papers 2011.68, Fondazione Eni Enrico Mattei.
    4. Lei, Mingyu & Cai, Wenjia & Liu, Wenling & Wang, Can, 2022. "The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China," Energy, Elsevier, vol. 253(C).
    5. Josephine K. Musango & Bamikole Amigun & Alan C. Brent, 2011. "Sustainable Electricity Generation Technologies in South Africa: Initiatives, Challenges and Policy Implications," Energy and Environment Research, Canadian Center of Science and Education, vol. 1(1), pages 124-124, December.
    6. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo & Managi, Shunsuke, 2019. "Energy transition, poverty and inequality in Vietnam," Energy Policy, Elsevier, vol. 132(C), pages 536-548.
    7. PHIRI Andrew & NYONI Bothwell, 2016. "Re-Visting The Electricity-Growth Nexus In South Africa," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 11(1), pages 97-111, April.
    8. Anil Shrestha & Makoto Kakinaka, 2022. "Remittance Inflows and Energy Transition of the Residential Sector in Developing Countries," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    9. Choumert-Nkolo, Johanna & Combes Motel, Pascale & Le Roux, Leonard, 2019. "Stacking up the ladder: A panel data analysis of Tanzanian household energy choices," World Development, Elsevier, vol. 115(C), pages 222-235.
    10. Henseler, Martin & Maisonnave, Helene, 2018. "Low world oil prices: A chance to reform fuel subsidies and promote public transport? A case study for South Africa," Transportation Research Part A: Policy and Practice, Elsevier, vol. 108(C), pages 45-62.
    11. Rebekka Besner & Kedar Mehta & Wilfried Zörner, 2023. "How to Enhance Energy Services in Informal Settlements? Qualitative Comparison of Renewable Energy Solutions," Energies, MDPI, vol. 16(12), pages 1-22, June.
    12. Adom, Philip Kofi & Adams, Samuel, 2018. "Energy savings in Nigeria. Is there a way of escape from energy inefficiency?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2421-2430.
    13. Simplice A. Asongu & Chimere O. Iheonu & Kingsley O. Odo, 2019. "The Conditional Relationship between Renewable Energy and Environmental Quality in Sub-Saharan Africa," Working Papers of the African Governance and Development Institute. 19/074, African Governance and Development Institute..
    14. Tafadzwa Ruzive & Thando Mkhombo & Simbarashe Mhaka & Nomahlubi Mavikela & Andrew Phiri, 2019. "Electricity Intensity and Unemployment in South Africa: A Quantile Regression Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 31-40.
    15. Sinha, Avik & Bekiros, Stelios & Hussain, Nazim & Nguyen, Duc Khuong & Khan, Sana Akbar, 2023. "How social imbalance and governance quality shape policy directives for energy transition in the OECD countries?," Energy Economics, Elsevier, vol. 120(C).
    16. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    17. Ranganai Chidembo & Joseph Francis & Simbarashe Kativhu, 2022. "Rural Households’ Perceptions of the Adoption of Rooftop Solar Photovoltaics in Vhembe District, South Africa," Energies, MDPI, vol. 15(17), pages 1-11, August.
    18. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Uche-Soria, Manuel & Rodríguez-Monroy, Carlos, 2020. "Energy planning and its relationship to energy poverty in decision making. A first approach for the Canary Islands," Energy Policy, Elsevier, vol. 140(C).
    20. Bothwell Nyoni & Andrew Phiri, 2018. "The Electricity-growth Nexus in South Africa: Evidence from Asymmetric Cointegration and Co-feature Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 80-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.