IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4687-d1170075.html
   My bibliography  Save this article

How to Enhance Energy Services in Informal Settlements? Qualitative Comparison of Renewable Energy Solutions

Author

Listed:
  • Rebekka Besner

    (Institute of new Energy Systems (InES), Technische Hochschule Ingolstadt (THI), 85049 Ingolstadt, Germany)

  • Kedar Mehta

    (Institute of new Energy Systems (InES), Technische Hochschule Ingolstadt (THI), 85049 Ingolstadt, Germany)

  • Wilfried Zörner

    (Institute of new Energy Systems (InES), Technische Hochschule Ingolstadt (THI), 85049 Ingolstadt, Germany)

Abstract

More than half of the urban population of Sub-Saharan Africa lives in informal housing conditions. While urban areas are, in general, characterized by a high electrification rate, residents of informal settlements are still affected by energy poverty, the use of traditional energy sources and unreliable electricity supply. The aim of the study is to give an overview of different renewable-energy-based solutions which are able to improve local energy provision. These are Solar Home Systems, Mini-Grids, and Energy-Hubs. The technologies are compared to another option for improving energy supply, namely Grid Expansion. The analysis is based on 24 Key Performance Indicators, which can be classified into technical, economic, environmental, social, and political dimensions. The selection of indicators is based on the challenges prevalent in informal settlements that impede a comprehensive, sustainable energy supply. The literature-based indices are used to determine which of the four technologies is a suitable solution for minimizing the challenges prevailing in informal settlements. The resulting matrix provides a holistic comparison and serves as a decision aid in selecting the appropriate technology for future projects in informal settlements, depending on local conditions and the needs of the population. The results show that the Energy-Hub is a valid alternative for energy supply improvement in Informal Settlements.

Suggested Citation

  • Rebekka Besner & Kedar Mehta & Wilfried Zörner, 2023. "How to Enhance Energy Services in Informal Settlements? Qualitative Comparison of Renewable Energy Solutions," Energies, MDPI, vol. 16(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4687-:d:1170075
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    2. Blimpo,Moussa Pouguinimpo & Mcrae,Shaun David & Steinbuks,Jevgenijs, 2018. "Why are connection charges so high ? an analysis of the electricity sector in Sub-Saharan Africa," Policy Research Working Paper Series 8407, The World Bank.
    3. Vanesa Castán Broto & Lucy Stevens & Emmanuel Ackom & Julia Tomei & Priti Parikh & Iwona Bisaga & Long Seng To & Joshua Kirshner & Yacob Mulugetta, 2017. "A research agenda for a people-centred approach to energy access in the urbanizing global south," Nature Energy, Nature, vol. 2(10), pages 776-779, October.
    4. Masako Numata & Masahiro Sugiyama & Gento Mogi, 2020. "Barrier Analysis for the Deployment of Renewable-Based Mini-Grids in Myanmar Using the Analytic Hierarchy Process (AHP)," Energies, MDPI, vol. 13(6), pages 1-16, March.
    5. Michael Grimm & Anicet Munyehirwe & Jörg Peters & Maximiliane Sievert, 2017. "A First Step up the Energy Ladder? Low Cost Solar Kits and Household’s Welfare in Rural Rwanda," The World Bank Economic Review, World Bank, vol. 31(3), pages 631-649.
    6. Akella, A.K. & Saini, R.P. & Sharma, M.P., 2009. "Social, economical and environmental impacts of renewable energy systems," Renewable Energy, Elsevier, vol. 34(2), pages 390-396.
    7. Peris Njoroge & Amollo Ambole & Daniel Githira & George Outa, 2020. "Steering Energy Transitions through Landscape Governance: Case of Mathare Informal Settlement, Nairobi, Kenya," Land, MDPI, vol. 9(6), pages 1-19, June.
    8. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    9. Okoye, Chiemeka Onyeka & Oranekwu-Okoye, Blessing Chioma, 2018. "Economic feasibility of solar PV system for rural electrification in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2537-2547.
    10. Narayan, Nishant & Chamseddine, Ali & Vega-Garita, Victor & Qin, Zian & Popovic-Gerber, Jelena & Bauer, Pavol & Zeman, Miroslav, 2019. "Exploring the boundaries of Solar Home Systems (SHS) for off-grid electrification: Optimal SHS sizing for the multi-tier framework for household electricity access," Applied Energy, Elsevier, vol. 240(C), pages 907-917.
    11. Ilskog, Elisabeth, 2008. "Indicators for assessment of rural electrification--An approach for the comparison of apples and pears," Energy Policy, Elsevier, vol. 36(7), pages 2665-2673, July.
    12. Azimoh, Chukwuma Leonard & Wallin, Fredrik & Klintenberg, Patrik & Karlsson, Björn, 2014. "An assessment of unforeseen losses resulting from inappropriate use of solar home systems in South Africa," Applied Energy, Elsevier, vol. 136(C), pages 336-346.
    13. Kovacic, Zora & Musango, Josephine Kaviti & Ambole, Lorraine Amollo & Buyana, Kareem & Smit, Suzanne & Anditi, Christer & Mwau, Baraka & Ogot, Madara & Lwasa, Shuaib & Brent, Alan C. & Nsangi, Gloria , 2019. "Interrogating differences: A comparative analysis of Africa’s informal settlements," World Development, Elsevier, vol. 122(C), pages 614-627.
    14. Subhes C. Bhattacharyya, 2018. "Mini-Grids for the Base of the Pyramid Market: A Critical Review," Energies, MDPI, vol. 11(4), pages 1-21, April.
    15. Aili Amupolo & Sofia Nambundunga & Daniel S. P. Chowdhury & Gunnar Grün, 2022. "Techno-Economic Feasibility of Off-Grid Renewable Energy Electrification Schemes: A Case Study of an Informal Settlement in Namibia," Energies, MDPI, vol. 15(12), pages 1-32, June.
    16. Bhattacharyya, S.C. & Palit, D., 2021. "A critical review of literature on the nexus between central grid and off-grid solutions for expanding access to electricity in Sub-Saharan Africa and South Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Ortega-Arriaga, P. & Babacan, O. & Nelson, J. & Gambhir, A., 2021. "Grid versus off-grid electricity access options: A review on the economic and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hisham Alghamdi & Aníbal Alviz-Meza, 2023. "Techno-Environmental Evaluation and Optimization of a Hybrid System: Application of Numerical Simulation and Gray Wolf Algorithm in Saudi Arabia," Sustainability, MDPI, vol. 15(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    2. Brunet, Carole & Savadogo, Oumarou & Baptiste, Pierre & Bouchard, Michel A., 2018. "Shedding some light on photovoltaic solar energy in Africa – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 325-342.
    3. Bensch, Gunther & Grimm, Michael & Huppertz, Maximilian & Langbein, Jörg & Peters, Jörg, 2018. "Are promotion programs needed to establish off-grid solar energy markets? Evidence from rural Burkina Faso," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1060-1068.
    4. Blimpo, Moussa P. & Postepska, Agnieszka & Xu, Yanbin, 2020. "Why is household electricity uptake low in Sub-Saharan Africa?," World Development, Elsevier, vol. 133(C).
    5. Choumert-Nkolo, Johanna & Combes Motel, Pascale & Le Roux, Leonard, 2019. "Stacking up the ladder: A panel data analysis of Tanzanian household energy choices," World Development, Elsevier, vol. 115(C), pages 222-235.
    6. Andrés González-García & Pedro Ciller & Stephen Lee & Rafael Palacios & Fernando de Cuadra García & José Ignacio Pérez-Arriaga, 2022. "A Rising Role for Decentralized Solar Minigrids in Integrated Rural Electrification Planning? Large-Scale, Least-Cost, and Customer-Wise Design of Grid and Off-Grid Supply Systems in Uganda," Energies, MDPI, vol. 15(13), pages 1-31, June.
    7. Isaacs, Stewart & Kalashnikova, Olga & Garay, Michael J. & van Donkelaar, Aaron & Hammer, Melanie S. & Lee, Huikyo & Wood, Danielle, 2023. "Dust soiling effects on decentralized solar in West Africa," Applied Energy, Elsevier, vol. 340(C).
    8. Sievert, Maximiliane & Steinbuks, Jevgenijs, 2020. "Willingness to pay for electricity access in extreme poverty: Evidence from sub-Saharan Africa," World Development, Elsevier, vol. 128(C).
    9. Aziz, Shakila & Chowdhury, Shahriar Ahmed, 2021. "Determinants of off-grid electrification choice and expenditure: Evidence from Bangladesh," Energy, Elsevier, vol. 219(C).
    10. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Liu, Yang & Bah, Zainab, 2021. "Enabling development impact of solar mini-grids through the community engagement: Evidence from rural Sierra Leone," Energy Policy, Elsevier, vol. 154(C).
    12. Akbas, Beste & Kocaman, Ayse Selin & Nock, Destenie & Trotter, Philipp A., 2022. "Rural electrification: An overview of optimization methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Shakya, Bhupendra & Bruce, Anna & MacGill, Iain, 2019. "Survey based characterisation of energy services for improved design and operation of standalone microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 493-503.
    14. Naidoo, A., 2020. "The socio-economic impacts of solar water heaters compared across two communities: A case study of Cato Manor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Divya Vohra & Edith Felix & Duncan Chaplin & Arif Mamun, "undated". "Evaluation of the Kigoma Solar Activity in Tanzania: Final Report," Mathematica Policy Research Reports 70763ce2e26a4b9e8842677d1, Mathematica Policy Research.
    16. Isa Ferrall & Georg Heinemann & Christian von Hirschhausen & Daniel M. Kammen, 2021. "The Role of Political Economy in Energy Access: Public and Private Off-Grid Electrification in Tanzania," Energies, MDPI, vol. 14(11), pages 1-23, May.
    17. Wale Arewolo & Philipp Blechinger & Catherina Cader & Yannick Perez, 2019. "Seeking workable solutions to the electrification challenge in Nigeria: Minigrid, reverse auctions and institutional adaptation," Post-Print halshs-01989683, HAL.
    18. Blessing Ugwoke & Adedoyin Adeleke & Stefano P. Corgnati & Joshua M. Pearce & Pierluigi Leone, 2020. "Decentralized Renewable Hybrid Mini-Grids for Rural Communities: Culmination of the IREP Framework and Scale up to Urban Communities," Sustainability, MDPI, vol. 12(18), pages 1-26, September.
    19. Kathleen Mallard & Vincent Debusschere & Lauric Garbuio, 2020. "Multi-Criteria Method for Sustainable Design of Energy Conversion Systems," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    20. Fernando Antonanzas-Torres & Javier Antonanzas & Julio Blanco-Fernandez, 2021. "Environmental Impact of Solar Home Systems in Sub-Saharan Africa," Sustainability, MDPI, vol. 13(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4687-:d:1170075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.