IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v102y2019icp75-82.html
   My bibliography  Save this article

Financial de-risking to unlock Africa's renewable energy potential

Author

Listed:
  • Sweerts, Bart
  • Longa, Francesco Dalla
  • van der Zwaan, Bob

Abstract

African countries are in a unique position to reap the socio-economic and environmental benefits of renewable resources as a means for meeting increasing energy demand in a sustainable way. A critical obstacle for the deployment of renewable energy technologies in Africa is the difficulty of attracting sufficient and affordable finance. This paper compares the impact of financial conditions on the cost of electricity generation across six renewable and three fossil-based technologies in 46 African countries. The results show large cost variations and highlight the extent to which renewables are disadvantaged by current financial practices. The energy-economy-environment model TIAM-ECN is used to show how lowering financing costs results in a much higher deployment of renewables. For example, solar PV could account for 10–15% of total electricity generation by 2050, even without explicit climate policy, thanks to financial de-risking programmes. The results demonstrate that changes in financing schemes could outweigh the impact of technology learning. This paper also demonstrates that, once ambitious climate policies are in place, reducing financing costs for renewables could be an efficient way to lower greenhouse gas emissions. Financial de-risking is thus a key ingredient for unlocking the renewable energy potential in Africa.

Suggested Citation

  • Sweerts, Bart & Longa, Francesco Dalla & van der Zwaan, Bob, 2019. "Financial de-risking to unlock Africa's renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 75-82.
  • Handle: RePEc:eee:rensus:v:102:y:2019:i:c:p:75-82
    DOI: 10.1016/j.rser.2018.11.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118307925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.11.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.
    2. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    3. Komendantova, Nadejda & Patt, Anthony & Barras, Lucile & Battaglini, Antonella, 2012. "Perception of risks in renewable energy projects: The case of concentrated solar power in North Africa," Energy Policy, Elsevier, vol. 40(C), pages 103-109.
    4. Walwyn, David Richard & Brent, Alan Colin, 2015. "Renewable energy gathers steam in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 390-401.
    5. Tobias S. Schmidt & Robin Born & Malte Schneider, 2012. "Assessing the costs of photovoltaic and wind power in six developing countries," Nature Climate Change, Nature, vol. 2(7), pages 548-553, July.
    6. Joeri Rogelj & David L. McCollum & Andy Reisinger & Malte Meinshausen & Keywan Riahi, 2013. "Probabilistic cost estimates for climate change mitigation," Nature, Nature, vol. 493(7430), pages 79-83, January.
    7. Roger Fouquet, 2016. "Path dependence in energy systems and economic development," Nature Energy, Nature, vol. 1(8), pages 1-5, August.
    8. Luzi Hail & Christian Leuz, 2006. "International Differences in the Cost of Equity Capital: Do Legal Institutions and Securities Regulation Matter?," Journal of Accounting Research, Wiley Blackwell, vol. 44(3), pages 485-531, June.
    9. van der Zwaan, Bob & Kober, Tom & Longa, Francesco Dalla & van der Laan, Anouk & Jan Kramer, Gert, 2018. "An integrated assessment of pathways for low-carbon development in Africa," Energy Policy, Elsevier, vol. 117(C), pages 387-395.
    10. Ryan Wiser & Karen Jenni & Joachim Seel & Erin Baker & Maureen Hand & Eric Lantz & Aaron Smith, 2016. "Expert elicitation survey on future wind energy costs," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    11. Ottmar Edenhofer , Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Chateau, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertra, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    12. Akinlo, A.E., 2008. "Energy consumption and economic growth: Evidence from 11 Sub-Sahara African countries," Energy Economics, Elsevier, vol. 30(5), pages 2391-2400, September.
    13. Barasa, Maulidi & Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2018. "A cost optimal resolution for Sub-Saharan Africa powered by 100% renewables in 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 440-457.
    14. Schinko, Thomas & Komendantova, Nadejda, 2016. "De-risking investment into concentrated solar power in North Africa: Impacts on the costs of electricity generation," Renewable Energy, Elsevier, vol. 92(C), pages 262-272.
    15. Frisari, Gianleo & Stadelmann, Martin, 2015. "De-risking concentrated solar power in emerging markets: The role of policies and international finance institutions," Energy Policy, Elsevier, vol. 82(C), pages 12-22.
    16. Schwerhoff, Gregor & Sy, Mouhamadou, 2017. "Financing renewable energy in Africa – Key challenge of the sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 393-401.
    17. Ondraczek, Janosch & Komendantova, Nadejda & Patt, Anthony, 2015. "WACC the dog: The effect of financing costs on the levelized cost of solar PV power," Renewable Energy, Elsevier, vol. 75(C), pages 888-898.
    18. Dalla Longa, Francesco & van der Zwaan, Bob, 2017. "Do Kenya’s climate change mitigation ambitions necessitate large-scale renewable energy deployment and dedicated low-carbon energy policy?," Renewable Energy, Elsevier, vol. 113(C), pages 1559-1568.
    19. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    20. Tobias S. Schmidt, 2014. "Low-carbon investment risks and de-risking," Nature Climate Change, Nature, vol. 4(4), pages 237-239, April.
    21. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    22. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komendantova, Nadejda & Schinko, Thomas & Patt, Anthony, 2019. "De-risking policies as a substantial determinant of climate change mitigation costs in developing countries: Case study of the Middle East and North African region," Energy Policy, Elsevier, vol. 127(C), pages 404-411.
    2. Egli, Florian, 2020. "Renewable energy investment risk: An investigation of changes over time and the underlying drivers," Energy Policy, Elsevier, vol. 140(C).
    3. Schwerhoff, Gregor & Sy, Mouhamadou, 2017. "Financing renewable energy in Africa – Key challenge of the sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 393-401.
    4. Schinko, Thomas & Komendantova, Nadejda, 2016. "De-risking investment into concentrated solar power in North Africa: Impacts on the costs of electricity generation," Renewable Energy, Elsevier, vol. 92(C), pages 262-272.
    5. George A. Gonzalez, 2016. "Transforming Energy: Solving Climate Change with Technology Policy . New York : Cambridge University Press . 360 pages. ISBN 9781107614970, $29.99 paperback. Anthony Patt , 2015 ," Review of Policy Research, Policy Studies Organization, vol. 33(1), pages 111-113, January.
    6. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    7. Dobrotkova, Zuzana & Surana, Kavita & Audinet, Pierre, 2018. "The price of solar energy: Comparing competitive auctions for utility-scale solar PV in developing countries," Energy Policy, Elsevier, vol. 118(C), pages 133-148.
    8. Ondraczek, Janosch & Komendantova, Nadejda & Patt, Anthony, 2015. "WACC the dog: The effect of financing costs on the levelized cost of solar PV power," Renewable Energy, Elsevier, vol. 75(C), pages 888-898.
    9. Malhotra, Abhishek & Schmidt, Tobias S. & Haelg, Leonore & Waissbein, Oliver, 2017. "Scaling up finance for off-grid renewable energy: The role of aggregation and spatial diversification in derisking investments in mini-grids for rural electrification in India," Energy Policy, Elsevier, vol. 108(C), pages 657-672.
    10. Labordena, Mercè & Patt, Anthony & Bazilian, Morgan & Howells, Mark & Lilliestam, Johan, 2017. "Impact of political and economic barriers for concentrating solar power in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 102(C), pages 52-72.
    11. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    12. Friedemann Polzin & Mark Sanders & Bjarne Steffen & Florian Egli & Tobias S. Schmidt & Panagiotis Karkatsoulis & Panagiotis Fragkos & Leonidas Paroussos, 2021. "The effect of differentiating costs of capital by country and technology on the European energy transition," Climatic Change, Springer, vol. 167(1), pages 1-21, July.
    13. Damien Bazin & Nouri Chtourou & Amna Omri, 2019. "Risk management and policy implications for concentrating solar power technology investments in Tunisia," Post-Print hal-02061788, HAL.
    14. Ishaya Tambari & Pierre Failler, 2020. "Determining If Oil Prices Significantly Affect Renewable Energy Investment in African Countries with Energy Security Concerns," Energies, MDPI, vol. 13(24), pages 1-21, December.
    15. Steffen, Bjarne, 2020. "Estimating the cost of capital for renewable energy projects," Energy Economics, Elsevier, vol. 88(C).
    16. F.H.J. Polzin & M.W.J.L. Sanders & Florian Täube, 2017. "A diverse and resilient financial system for investments in the energy transition," Working Papers 17-03, Utrecht School of Economics.
    17. Brown, Patrick R. & O'Sullivan, Francis M., 2020. "Spatial and temporal variation in the value of solar power across United States electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    18. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst, 2018. "Barriers to investment in utility-scale variable renewable electricity (VRE) generation projects," Renewable Energy, Elsevier, vol. 121(C), pages 730-744.
    19. Tao, Jacqueline Yujia & Finenko, Anton, 2016. "Moving beyond LCOE: impact of various financing methods on PV profitability for SIDS," Energy Policy, Elsevier, vol. 98(C), pages 749-758.
    20. Đukan, Mak & Kitzing, Lena, 2021. "The impact of auctions on financing conditions and cost of capital for wind energy projects," Energy Policy, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:102:y:2019:i:c:p:75-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.