IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

On the physics of power, energy and economics of renewable electric energy sources – Part I

Listed author(s):
  • Leijon, Mats
  • Skoglund, Annika
  • Waters, Rafael
  • Rehn, Alf
  • Lindahl, Marcus
Registered author(s):

    Environmental concerns have increasingly led to the installation of Renewable Energy Technologies (RETs) despite the fact that they are recognized as expensive. Innovative efforts within the area are beset with difficulties [1], and they are at risk of producing misdirected or insignificant improvements in terms of the cost effectiveness of total energy conversion systems. This paper investigates how RETs can be evaluated, in terms of economy and engineering solutions, by studying the fundamental physics of renewable energy sources and how it matches with the RETs. This match is described by the “Degree of Utilization”. The findings indicate that new innovations should focus on the possible number of full loading hours. RETs that are correctly matched to their energy source generate a higher amount of electric energy and have a higher potential of becoming more competitive. In cases where this aspect has been ignored, leading to relatively small degrees of utilization, it can be understood as an engineering mismatch between installed power, converted energy, and the fundamental physics of the renewable energy sources. Since there is a strong and possibly biased support for so-called mature RETs and already existing solutions, a clarification of how fundamental physical laws affect the cost of investments and payback of investments is needed. The present paper is part I out of II and it focuses on the difference between power and energy and the physics of different energy sources and their utilization.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109004698
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Renewable Energy.

    Volume (Year): 35 (2010)
    Issue (Month): 8 ()
    Pages: 1729-1734

    as
    in new window

    Handle: RePEc:eee:renene:v:35:y:2010:i:8:p:1729-1734
    DOI: 10.1016/j.renene.2009.10.030
    Contact details of provider: Web page: http://www.journals.elsevier.com/renewable-energy

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Grubb, M. J., 1990. "The cinderella options : A study of modernized renewable energy technologies Part 2-Political and policy analysis," Energy Policy, Elsevier, vol. 18(8), pages 711-725, October.
    2. DeCarolis, Joseph F. & Keith, David W., 2005. "The Costs of Wind's Variability: Is There a Threshold?," The Electricity Journal, Elsevier, vol. 18(1), pages 69-77.
    3. Nakata, Toshihiko & Kubo, Kazuo & Lamont, Alan, 2005. "Design for renewable energy systems with application to rural areas in Japan," Energy Policy, Elsevier, vol. 33(2), pages 209-219, January.
    4. Grubb, Michael & Butler, Lucy & Twomey, Paul, 2006. "Diversity and security in UK electricity generation: The influence of low-carbon objectives," Energy Policy, Elsevier, vol. 34(18), pages 4050-4062, December.
    5. Street, Penny & Miles, Ian, 1996. "Transition to alternative energy supply technologies : The case of windpower," Energy Policy, Elsevier, vol. 24(5), pages 413-425, May.
    6. Leijon, Mats & Bernhoff, Hans & Berg, Marcus & Ågren, Olov, 2003. "Economical considerations of renewable electric energy production—especially development of wave energy," Renewable Energy, Elsevier, vol. 28(8), pages 1201-1209.
    7. Fuller, Dan A., 1991. "Alternative scale measures and the behaviour of average costs in steam electric generation," Energy Economics, Elsevier, vol. 13(1), pages 61-68, January.
    8. Grubb, M. J., 1990. "The cinderella options a study of modernized renewable energy technologies part 1-A technical assessment," Energy Policy, Elsevier, vol. 18(6), pages 525-542.
    9. Kagel, Alyssa & Gawell, Karl, 2005. "Promoting Geothermal Energy: Air Emissions Comparison and Externality Analysis," The Electricity Journal, Elsevier, vol. 18(7), pages 90-99.
    10. Hoogwijk, Monique & van Vuuren, Detlef & de Vries, Bert & Turkenburg, Wim, 2007. "Exploring the impact on cost and electricity production of high penetration levels of intermittent electricity in OECD Europe and the USA, results for wind energy," Energy, Elsevier, vol. 32(8), pages 1381-1402.
    11. Menanteau, Philippe & Finon, Dominique & Lamy, Marie-Laure, 2003. "Prices versus quantities: choosing policies for promoting the development of renewable energy," Energy Policy, Elsevier, vol. 31(8), pages 799-812, June.
    12. Asmus, Peter, 2003. "How California Hopes to Manage the Intermittency of Wind Power," The Electricity Journal, Elsevier, vol. 16(6), pages 48-53, July.
    13. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2006. "Techno-economics of micro-hydro projects for decentralized power supply in India," Energy Policy, Elsevier, vol. 34(10), pages 1161-1174, July.
    14. Michael Grubb,, 1994. "Renewable energy strategies for Europe," Renewable Energy, Elsevier, vol. 5(1), pages 83-101.
    15. Grubb, Michael J., 1988. "The potential for wind energy in Britain," Energy Policy, Elsevier, vol. 16(6), pages 594-607, December.
    16. Joselin Herbert, G.M. & Iniyan, S. & Sreevalsan, E. & Rajapandian, S., 2007. "A review of wind energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1117-1145, August.
    17. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    18. Zhixin, Wang & Chuanwen, Jiang & Qian, Ai & Chengmin, Wang, 2009. "The key technology of offshore wind farm and its new development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 216-222, January.
    19. Stallard, T. & Rothschild, R. & Aggidis, G.A., 2008. "A comparative approach to the economic modelling of a large-scale wave power scheme," European Journal of Operational Research, Elsevier, vol. 185(2), pages 884-898, March.
    20. Brown, Marilyn A. & York, Dan & Kushler, Martin, 2007. "Reduced Emissions and Lower Costs: Combining Renewable Energy and Energy Efficiency into a Sustainable Energy Portfolio Standard," The Electricity Journal, Elsevier, vol. 20(4), pages 62-72, May.
    21. Ferreira, Rafael M. & Estefen, Segen F., 2009. "Alternative concept for tidal power plant with reservoir restrictions," Renewable Energy, Elsevier, vol. 34(4), pages 1151-1157.
    22. Kosnik, Lea, 2008. "The potential of water power in the fight against global warming in the US," Energy Policy, Elsevier, vol. 36(9), pages 3252-3265, September.
    23. Kahn, Edward P., 2004. "Effective Load Carrying Capability of Wind Generation: Initial Results with Public Data," The Electricity Journal, Elsevier, vol. 17(10), pages 85-95, December.
    24. Grubb, M. J., 1991. "The integration of renewable electricity sources," Energy Policy, Elsevier, vol. 19(7), pages 670-688, September.
    25. Li, Zhi-Sheng & Zhang, Guo-Qiang & Li, Dong-Mei & Zhou, Jin & Li, Li-Juan & Li, Li-Xin, 2007. "Application and development of solar energy in building industry and its prospects in China," Energy Policy, Elsevier, vol. 35(8), pages 4121-4127, August.
    26. Gross, Robert, 2004. "Technologies and innovation for system change in the UK: status, prospects and system requirements of some leading renewable energy options," Energy Policy, Elsevier, vol. 32(17), pages 1905-1919, November.
    27. Goldemberg, Jose, 2006. "The promise of clean energy," Energy Policy, Elsevier, vol. 34(15), pages 2185-2190, October.
    28. Grubb, Michael, 1997. "Technologies, energy systems and the timing of CO2 emissions abatement : An overview of economic issues," Energy Policy, Elsevier, vol. 25(2), pages 159-172, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:8:p:1729-1734. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.