IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p793-d209531.html
   My bibliography  Save this article

Characterization of Wave Energy Potential for the Baltic Sea with Focus on the Swedish Exclusive Economic Zone

Author

Listed:
  • Erik Nilsson

    (Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden)

  • Anna Rutgersson

    (Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden)

  • Adam Dingwell

    (Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden)

  • Jan-Victor Björkqvist

    (Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland)

  • Heidi Pettersson

    (Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland)

  • Lars Axell

    (Swedish Meteorological and Hydrological Institute, SE-601 76 Norrköping, Sweden)

  • Johan Nyberg

    (Geological Survey of Sweden, Box 670, SE-751 28 Uppsala, Sweden)

  • Erland Strömstedt

    (Division of Electricity, Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden)

Abstract

In this study, a third-generation wave model is used to examine the wave power resource for the Baltic Sea region at an unprecedented one-kilometer-scale resolution for the years 1998 to 2013. Special focus is given to the evaluation and description of wave field characteristics for the Swedish Exclusive Economic Zone (SEEZ). It is carried out to provide a more detailed assessment of the potential of waves as a renewable energy resource for the region. The wave energy potential is largely controlled by the distance from the coast and the fetch associated with the prevailing dominant wave direction. The ice cover is also shown to significantly influence the wave power resource, especially in the most northern basins of the SEEZ. For the areas in focus here, the potential annual average wave energy flux reaches 45 MWh/m/year in the two sub-basins with the highest wave energies, but local variations are up to 65 MWh/m/year. The assessment provides the basis for a further detailed identification of potential sites for wave energy converters. An outlook is given for additional aspects studied within a broad multi-disciplinary project to assess the conditions for offshore wave energy conversion within the SEEZ.

Suggested Citation

  • Erik Nilsson & Anna Rutgersson & Adam Dingwell & Jan-Victor Björkqvist & Heidi Pettersson & Lars Axell & Johan Nyberg & Erland Strömstedt, 2019. "Characterization of Wave Energy Potential for the Baltic Sea with Focus on the Swedish Exclusive Economic Zone," Energies, MDPI, vol. 12(5), pages 1-28, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:793-:d:209531
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leijon, Mats & Skoglund, Annika & Waters, Rafael & Rehn, Alf & Lindahl, Marcus, 2010. "On the physics of power, energy and economics of renewable electric energy sources – Part I," Renewable Energy, Elsevier, vol. 35(8), pages 1729-1734.
    2. Henfridsson, Urban & Neimane, Viktoria & Strand, Kerstin & Kapper, Robert & Bernhoff, Hans & Danielsson, Oskar & Leijon, Mats & Sundberg, Jan & Thorburn, Karin & Ericsson, Ellerth & Bergman, Karl, 2007. "Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak," Renewable Energy, Elsevier, vol. 32(12), pages 2069-2084.
    3. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    4. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    5. Bernhoff, Hans & Sjöstedt, Elisabeth & Leijon, Mats, 2006. "Wave energy resources in sheltered sea areas: A case study of the Baltic Sea," Renewable Energy, Elsevier, vol. 31(13), pages 2164-2170.
    6. Bernardino, Mariana & Rusu, Liliana & Guedes Soares, C., 2017. "Evaluation of the wave energy resources in the Cape Verde Islands," Renewable Energy, Elsevier, vol. 101(C), pages 316-326.
    7. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    8. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    9. Kovaleva, Olga & Eelsalu, Maris & Soomere, Tarmo, 2017. "Hot-spots of large wave energy resources in relatively sheltered sections of the Baltic Sea coast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 424-437.
    10. Kasiulis, Egidijus & Punys, Petras & Kofoed, Jens Peter, 2015. "Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 134-142.
    11. Waters, Rafael & Engström, Jens & Isberg, Jan & Leijon, Mats, 2009. "Wave climate off the Swedish west coast," Renewable Energy, Elsevier, vol. 34(6), pages 1600-1606.
    12. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    13. Farhadzadeh, Ali & Hashemi, M. Reza & Neill, Simon, 2017. "Characterizing the Great Lakes hydrokinetic renewable energy resource: Lake Erie wave, surge and seiche characteristics," Energy, Elsevier, vol. 128(C), pages 661-675.
    14. Nobre, Ana & Pacheco, Miguel & Jorge, Raquel & Lopes, M.F.P. & Gato, L.M.C., 2009. "Geo-spatial multi-criteria analysis for wave energy conversion system deployment," Renewable Energy, Elsevier, vol. 34(1), pages 97-111.
    15. Skoglund, Annika & Leijon, Mats & Rehn, Alf & Lindahl, Marcus & Waters, Rafael, 2010. "On the physics of power, energy and economics of renewable electric energy sources - Part II," Renewable Energy, Elsevier, vol. 35(8), pages 1735-1740.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios Batsis & Panagiotis Partsinevelos & Georgios Stavrakakis, 2021. "A Deep Learning and GIS Approach for the Optimal Positioning of Wave Energy Converters," Energies, MDPI, vol. 14(20), pages 1-21, October.
    2. Zhongliang Meng & Yun Chen & Shizhen Li, 2022. "The Shape Optimization and Experimental Research of Heave Plate Applied to the New Wave Energy Converter," Energies, MDPI, vol. 15(4), pages 1-12, February.
    3. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kovaleva, Olga & Eelsalu, Maris & Soomere, Tarmo, 2017. "Hot-spots of large wave energy resources in relatively sheltered sections of the Baltic Sea coast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 424-437.
    2. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    3. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    4. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    5. Nikon Vidjajev & Riina Palu & Jan Terentjev & Olli-Pekka Hilmola & Victor Alari, 2022. "Assessment of the Development Limitations for Wave Energy Utilization in the Baltic Sea," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    6. Iglesias, G. & Carballo, R., 2009. "Wave energy potential along the Death Coast (Spain)," Energy, Elsevier, vol. 34(11), pages 1963-1975.
    7. Iglesias, G. & Carballo, R., 2010. "Wave energy resource in the Estaca de Bares area (Spain)," Renewable Energy, Elsevier, vol. 35(7), pages 1574-1584.
    8. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    9. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    10. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    11. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    12. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    13. Hadadpour, Sanaz & Etemad-Shahidi, Amir & Jabbari, Ebrahim & Kamranzad, Bahareh, 2014. "Wave energy and hot spots in Anzali port," Energy, Elsevier, vol. 74(C), pages 529-536.
    14. Iglesias, G. & Carballo, R., 2011. "Wave resource in El Hierro—an island towards energy self-sufficiency," Renewable Energy, Elsevier, vol. 36(2), pages 689-698.
    15. Blažauskas, Nerijus & Pašilis, Aleksas & Knolis, Audrius, 2015. "Potential applications for small scale wave energy installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 297-305.
    16. Arinaga, Randi A. & Cheung, Kwok Fai, 2012. "Atlas of global wave energy from 10 years of reanalysis and hindcast data," Renewable Energy, Elsevier, vol. 39(1), pages 49-64.
    17. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    18. Iglesias, G. & Carballo, R., 2011. "Choosing the site for the first wave farm in a region: A case study in the Galician Southwest (Spain)," Energy, Elsevier, vol. 36(9), pages 5525-5531.
    19. Kasiulis, Egidijus & Punys, Petras & Kofoed, Jens Peter, 2015. "Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 134-142.
    20. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:793-:d:209531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.