IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1313-d747211.html
   My bibliography  Save this article

The Shape Optimization and Experimental Research of Heave Plate Applied to the New Wave Energy Converter

Author

Listed:
  • Zhongliang Meng

    (College of Engineering, Qufu Normal University, Rizhao 276826, China
    Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China)

  • Yun Chen

    (Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China)

  • Shizhen Li

    (Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China)

Abstract

The development and utilization of wave energy is inseparable from the wave energy converter, and its stability is an important condition for operation. Heave is the biggest factor affecting the stable power generation of wave energy converters. The key method to solve this problem is to install a suitable heave plate. Therefore, the design of the heave plate is particularly important. Based on a new type of horizontal rotor wave energy converter, this paper proposes three different shapes of heave plate design schemes and completes the calculation and modeling of the engineering prototype. First, the three types of heave plate devices were numerically simulated using hydrodynamic calculation software to compare their stable performances and verify the feasibility of the scheme. Subsequently, an experimental model was made according to the parameters of the engineering prototype, and a tank experiment was carried out under the same working conditions to further study the influence of the heave plate installation distance on the stability of the wave energy generator. The results showed that when the distance was between 10 mm and 20 mm, the average amplitude change was large, and when the distance was between 20 mm and 30 mm, the average amplitude change was small. Therefore, the installation distance should be between 20 mm and 30 mm. In the case of the same heave plate area and installation distance, the average amplitude of the chamfered heave plate device was smaller than the other two types, indicating that its stability was better. The optimization of the shape and installation distance of the heave plate proposed in this study has obvious effects on improving the stability of the device and provides a reference for the design of the wave energy converter device.

Suggested Citation

  • Zhongliang Meng & Yun Chen & Shizhen Li, 2022. "The Shape Optimization and Experimental Research of Heave Plate Applied to the New Wave Energy Converter," Energies, MDPI, vol. 15(4), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1313-:d:747211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1313/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1313/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiu, Shouqiang & Liu, Kun & Wang, Dongjiao & Ye, Jiawei & Liang, Fulin, 2019. "A comprehensive review of ocean wave energy research and development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Zhongliang Meng & Yanjun Liu & Jian Qin & Shumin Sun, 2021. "Mooring Angle Study of a Horizontal Rotor Wave Energy Converter," Energies, MDPI, vol. 14(2), pages 1-14, January.
    3. Zhongliang Meng & Yanjun Liu & Jian Qin & Yun Chen, 2020. "Mathematical Modeling and Experimental Verification of a New Wave Energy Converter," Energies, MDPI, vol. 14(1), pages 1-13, December.
    4. Li, Ying & Pan, Dong-Zi, 2017. "The ebb and flow of tidal barrage development in Zhejiang Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 380-389.
    5. Fuyou Li & Hao Di, 2021. "Analysis of the Financing Structure of China’s Listed New Energy Companies under the Goal of Peak CO 2 Emissions and Carbon Neutrality," Energies, MDPI, vol. 14(18), pages 1-15, September.
    6. Doyle, Simeon & Aggidis, George A., 2019. "Development of multi-oscillating water columns as wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 75-86.
    7. Waters, Shaun & Aggidis, George, 2016. "Tidal range technologies and state of the art in review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 514-529.
    8. O’Connell, Ross & de Montera, Louis & Peters, Jared L. & Horion, Stéphanie, 2020. "An updated assessment of Ireland’s wave energy resource using satellite data assimilation and a revised wave period ratio," Renewable Energy, Elsevier, vol. 160(C), pages 1431-1444.
    9. Jang, Ha-Kun & Park, Sewan & Kim, Moo-Hyun & Kim, Kyong-Hwan & Hong, Keyyong, 2019. "Effects of heave plates on the global performance of a multi-unit floating offshore wind turbine," Renewable Energy, Elsevier, vol. 134(C), pages 526-537.
    10. Zabala, I. & Henriques, J.C.C. & Blanco, J.M. & Gomez, A. & Gato, L.M.C. & Bidaguren, I. & Falcão, A.F.O. & Amezaga, A. & Gomes, R.P.F., 2019. "Wave-induced real-fluid effects in marine energy converters: Review and application to OWC devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 535-549.
    11. Feng Wang & Changhai Gao & Wulin Zhang & Danwen Huang, 2021. "Industrial Structure Optimization and Low-Carbon Transformation of Chinese Industry Based on the Forcing Mechanism of CO 2 Emission Peak Target," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    12. Anargyros S. Mavrakos & Dimitrios N. Konispoliatis & Dimitrios G. Ntouras & George P. Papadakis & Spyros A. Mavrakos, 2022. "Hydrodynamics of Moonpool-Type Floaters: A Theoretical and a CFD Formulation," Energies, MDPI, vol. 15(2), pages 1-25, January.
    13. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    14. Wang, Zhifeng & Dong, Sheng & Li, Xue & Guedes Soares, C., 2016. "Assessments of wave energy in the Bohai Sea, China," Renewable Energy, Elsevier, vol. 90(C), pages 145-156.
    15. Anthony Roy & François Auger & Florian Dupriez-Robin & Salvy Bourguet & Quoc Tuan Tran, 2018. "Electrical Power Supply of Remote Maritime Areas: A Review of Hybrid Systems Based on Marine Renewable Energies," Energies, MDPI, vol. 11(7), pages 1-27, July.
    16. Li, Ning & Cheung, Kwok Fai & Cross, Patrick, 2020. "Numerical wave modeling for operational and survival analyses of wave energy converters at the US Navy Wave Energy Test Site in Hawaii," Renewable Energy, Elsevier, vol. 161(C), pages 240-256.
    17. Yong Wan & Chenqing Fan & Yongshou Dai & Ligang Li & Weifeng Sun & Peng Zhou & Xiaojun Qu, 2018. "Assessment of the Joint Development Potential of Wave and Wind Energy in the South China Sea," Energies, MDPI, vol. 11(2), pages 1-26, February.
    18. Vieira, Filipe & Cavalcante, Georgenes & Campos, Edmo & Taveira-Pinto, Francisco, 2020. "Wave energy flux variability and trend along the United Arab Emirates coastline based on a 40-year hindcast," Renewable Energy, Elsevier, vol. 160(C), pages 1194-1205.
    19. Erik Nilsson & Anna Rutgersson & Adam Dingwell & Jan-Victor Björkqvist & Heidi Pettersson & Lars Axell & Johan Nyberg & Erland Strömstedt, 2019. "Characterization of Wave Energy Potential for the Baltic Sea with Focus on the Swedish Exclusive Economic Zone," Energies, MDPI, vol. 12(5), pages 1-28, February.
    20. Andrea Farkas & Nastia Degiuli & Ivana Martić, 2019. "Assessment of Offshore Wave Energy Potential in the Croatian Part of the Adriatic Sea and Comparison with Wind Energy Potential," Energies, MDPI, vol. 12(12), pages 1-20, June.
    21. Xiwen Cui & Shaojun E & Dongxiao Niu & Dongyu Wang & Mingyu Li, 2021. "An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target," Sustainability, MDPI, vol. 13(15), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongliang Meng & Yanjun Liu & Jian Qin & Yun Chen, 2020. "Mathematical Modeling and Experimental Verification of a New Wave Energy Converter," Energies, MDPI, vol. 14(1), pages 1-13, December.
    2. Zhongliang Meng & Yanjun Liu & Jian Qin & Shumin Sun, 2021. "Mooring Angle Study of a Horizontal Rotor Wave Energy Converter," Energies, MDPI, vol. 14(2), pages 1-14, January.
    3. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Kamranzad, Bahareh & Lin, Pengzhi, 2020. "Sustainability of wave energy resources in the South China Sea based on five decades of changing climate," Energy, Elsevier, vol. 210(C).
    5. Shih-Chun Hsiao & Chao-Tzuen Cheng & Tzu-Yin Chang & Wei-Bo Chen & Han-Lun Wu & Jiun-Huei Jang & Lee-Yaw Lin, 2021. "Assessment of Offshore Wave Energy Resources in Taiwan Using Long-Term Dynamically Downscaled Winds from a Third-Generation Reanalysis Product," Energies, MDPI, vol. 14(3), pages 1-25, January.
    6. Sun, Peidong & Xu, Bin & Wang, Jichao, 2022. "Long-term trend analysis and wave energy assessment based on ERA5 wave reanalysis along the Chinese coastline," Applied Energy, Elsevier, vol. 324(C).
    7. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
    8. Budi Azhari & Fransisco Danang Wijaya & Edwar Yazid, 2021. "Performance of Linear Generator Designs for Direct Drive Wave Energy Converter under Unidirectional Long-Crested Random Waves," Energies, MDPI, vol. 14(16), pages 1-28, August.
    9. Erfan Amini & Rojin Asadi & Danial Golbaz & Mahdieh Nasiri & Seyed Taghi Omid Naeeni & Meysam Majidi Nezhad & Giuseppe Piras & Mehdi Neshat, 2021. "Comparative Study of Oscillating Surge Wave Energy Converter Performance: A Case Study for Southern Coasts of the Caspian Sea," Sustainability, MDPI, vol. 13(19), pages 1-21, October.
    10. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    11. Zhao, Xuanlie & Zhang, Lidong & Li, Mingwei & Johanning, Lars, 2021. "Experimental investigation on the hydrodynamic performance of a multi-chamber OWC-breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Zhu, Qing & Lu, Kai & Liu, Shan & Ruan, Yinglin & Wang, Lin & Yang, Sung-Byung, 2022. "Can low-carbon value bring high returns? Novel quantitative trading from portfolio-of-investment targets in a new-energy market," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 755-769.
    13. Angeloudis, Athanasios & Kramer, Stephan C. & Hawkins, Noah & Piggott, Matthew D., 2020. "On the potential of linked-basin tidal power plants: An operational and coastal modelling assessment," Renewable Energy, Elsevier, vol. 155(C), pages 876-888.
    14. Oscar Barambones & Jose M. Gonzalez de Durana & Isidro Calvo, 2018. "Adaptive Sliding Mode Control for a Double Fed Induction Generator Used in an Oscillating Water Column System," Energies, MDPI, vol. 11(11), pages 1-27, October.
    15. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. Gradowski, M. & Gomes, R.P.F. & Alves, M., 2020. "Hydrodynamic optimisation of an axisymmetric floating Oscillating Water Column type wave energy converter with an enlarged inner tube," Renewable Energy, Elsevier, vol. 162(C), pages 1519-1532.
    17. Evangelia Dialyna & Theocharis Tsoutsos, 2021. "Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects," Energies, MDPI, vol. 14(16), pages 1-18, August.
    18. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1313-:d:747211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.