IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i11p1963-1975.html
   My bibliography  Save this article

Wave energy potential along the Death Coast (Spain)

Author

Listed:
  • Iglesias, G.
  • Carballo, R.

Abstract

The newly available SIMAR-44 data set, covering a 44-year period, is used together with wave buoy data to assess the wave energy resource along the Death Coast, the craggy stretch from Cape Finisterre to the Sisarga Isles. Its location at the north-western corner of the Iberian Peninsula and its coastline configuration result in exposure to a wide range of wave directions over the long Atlantic fetch. A total of 18 study sites are analysed—16 SIMAR-44 points and two wave buoys. Annual wave power in the Death Coast area is of the order of 50kWm−1, and annual wave energy exceeds 400MWhm−1. This vast resource is characterised thoroughly in terms of wave directions, heights and periods. A coastal wave propagation model (SWAN) is then implemented, validated based on wave buoy measurements, and used to investigate the nearshore energetic patterns. The irregular bathymetry of the Death Coast is shown to lead to local concentrations of wave energy off Capes Veo, Tosto and Finisterre and north of the Sisargas Isles, which are more conspicuous in winter and, especially, in storm situations.

Suggested Citation

  • Iglesias, G. & Carballo, R., 2009. "Wave energy potential along the Death Coast (Spain)," Energy, Elsevier, vol. 34(11), pages 1963-1975.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:11:p:1963-1975
    DOI: 10.1016/j.energy.2009.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209003454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sundar, V., 1987. "Wave-power potential off the South-East coast of India," Energy, Elsevier, vol. 12(2), pages 171-175.
    2. Lanfredi, N.W. & Pousa, J.L. & Mazio, C.A. & Dragani, W.C., 1992. "Wave-power potential along the coast of the province of Buenos Aires, Argentina," Energy, Elsevier, vol. 17(11), pages 997-1006.
    3. Iglesias, G. & López, M. & Carballo, R. & Castro, A. & Fraguela, J.A. & Frigaard, P., 2009. "Wave energy potential in Galicia (NW Spain)," Renewable Energy, Elsevier, vol. 34(11), pages 2323-2333.
    4. Mollison, Denis & Pontes, M.T., 1992. "Assessing the Portuguese wave-power resource," Energy, Elsevier, vol. 17(3), pages 255-268.
    5. Waters, Rafael & Engström, Jens & Isberg, Jan & Leijon, Mats, 2009. "Wave climate off the Swedish west coast," Renewable Energy, Elsevier, vol. 34(6), pages 1600-1606.
    6. Nobre, Ana & Pacheco, Miguel & Jorge, Raquel & Lopes, M.F.P. & Gato, L.M.C., 2009. "Geo-spatial multi-criteria analysis for wave energy conversion system deployment," Renewable Energy, Elsevier, vol. 34(1), pages 97-111.
    7. Baba, M., 1987. "Wave power potential off the south-west Indian coast," Energy, Elsevier, vol. 12(6), pages 501-507.
    8. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    9. Henfridsson, Urban & Neimane, Viktoria & Strand, Kerstin & Kapper, Robert & Bernhoff, Hans & Danielsson, Oskar & Leijon, Mats & Sundberg, Jan & Thorburn, Karin & Ericsson, Ellerth & Bergman, Karl, 2007. "Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak," Renewable Energy, Elsevier, vol. 32(12), pages 2069-2084.
    10. Guenther, Dennis A. & Jones, Dedger & Brown, David G., 1979. "An investigative study of a wave-energy device," Energy, Elsevier, vol. 4(2), pages 299-306.
    11. Bernhoff, Hans & Sjöstedt, Elisabeth & Leijon, Mats, 2006. "Wave energy resources in sheltered sea areas: A case study of the Baltic Sea," Renewable Energy, Elsevier, vol. 31(13), pages 2164-2170.
    12. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    13. Dunnett, David & Wallace, James S., 2009. "Electricity generation from wave power in Canada," Renewable Energy, Elsevier, vol. 34(1), pages 179-195.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    2. Akpınar, Adem & Kömürcü, Murat İhsan, 2012. "Wave energy potential along the south-east coasts of the Black Sea," Energy, Elsevier, vol. 42(1), pages 289-302.
    3. Iglesias, G. & Carballo, R., 2010. "Wave energy resource in the Estaca de Bares area (Spain)," Renewable Energy, Elsevier, vol. 35(7), pages 1574-1584.
    4. Liang, Bingchen & Fan, Fei & Yin, Zegao & Shi, Hongda & Lee, Dongyong, 2013. "Numerical modelling of the nearshore wave energy resources of Shandong peninsula, China," Renewable Energy, Elsevier, vol. 57(C), pages 330-338.
    5. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    6. Hadadpour, Sanaz & Etemad-Shahidi, Amir & Jabbari, Ebrahim & Kamranzad, Bahareh, 2014. "Wave energy and hot spots in Anzali port," Energy, Elsevier, vol. 74(C), pages 529-536.
    7. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    8. Iglesias, G. & Carballo, R., 2011. "Wave resource in El Hierro—an island towards energy self-sufficiency," Renewable Energy, Elsevier, vol. 36(2), pages 689-698.
    9. Akpınar, Adem & Kömürcü, Murat İhsan, 2013. "Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data," Applied Energy, Elsevier, vol. 101(C), pages 502-512.
    10. Iglesias, G. & Carballo, R., 2011. "Choosing the site for the first wave farm in a region: A case study in the Galician Southwest (Spain)," Energy, Elsevier, vol. 36(9), pages 5525-5531.
    11. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    12. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    13. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    14. Wu, Shuping & Liu, Chuanyu & Chen, Xinping, 2015. "Offshore wave energy resource assessment in the East China Sea," Renewable Energy, Elsevier, vol. 76(C), pages 628-636.
    15. Iglesias, G. & Carballo, R., 2010. "Wave power for La Isla Bonita," Energy, Elsevier, vol. 35(12), pages 5013-5021.
    16. Arinaga, Randi A. & Cheung, Kwok Fai, 2012. "Atlas of global wave energy from 10 years of reanalysis and hindcast data," Renewable Energy, Elsevier, vol. 39(1), pages 49-64.
    17. Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
    18. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    19. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    20. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:11:p:1963-1975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.