IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp1064-1075.html
   My bibliography  Save this article

Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast

Author

Listed:
  • Silva, Dina
  • Martinho, Paulo
  • Guedes Soares, C.

Abstract

An assessment of wave power resource for Portugal continental coast is presented, using thirty three years (1979–2012) of wave hindcast. The hindcast system is based in two spectral wave models, WWIII (WAVEWATCHIII) for the wave generation and SWAN (Simulating WAves Nearshore) for wave transformation in coastal areas. To improve the SWAN model performance, six high resolution areas (Aguçadoura, Figueira da Foz, São Pedro de Moel, Peniche, Cascais and Sines) were nested into one large area (Iberian coast). The assessment of wave power potential was done by studying the spatial and temporal behaviour using average for different time scales (monthly, seasonal, inter-annual and total time). Moreover, the wave climate variability was determined through the calculation of the coefficient of variation, seasonal variability index and monthly variability index. The results have shown that in Portugal the wave energy is higher in the northwest, that the wave climate variability has more impact in the south and that the month with the highest energy is January. A bivariate distribution of significant wave height and energy period was also determined, showing that the sea states where more wave power can be extracted are different than the ones that occur more frequently.

Suggested Citation

  • Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:1064-1075
    DOI: 10.1016/j.renene.2018.05.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118305585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.05.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iglesias, G. & Carballo, R., 2009. "Wave energy potential along the Death Coast (Spain)," Energy, Elsevier, vol. 34(11), pages 1963-1975.
    2. Lanfredi, N.W. & Pousa, J.L. & Mazio, C.A. & Dragani, W.C., 1992. "Wave-power potential along the coast of the province of Buenos Aires, Argentina," Energy, Elsevier, vol. 17(11), pages 997-1006.
    3. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    4. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.
    5. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    6. Mackay, Edward B.L. & Bahaj, AbuBakr S. & Challenor, Peter G., 2010. "Uncertainty in wave energy resource assessment. Part 2: Variability and predictability," Renewable Energy, Elsevier, vol. 35(8), pages 1809-1819.
    7. Vicinanza, D. & Contestabile, P. & Ferrante, V., 2013. "Wave energy potential in the north-west of Sardinia (Italy)," Renewable Energy, Elsevier, vol. 50(C), pages 506-521.
    8. Iglesias, G. & Carballo, R., 2011. "Wave resource in El Hierro—an island towards energy self-sufficiency," Renewable Energy, Elsevier, vol. 36(2), pages 689-698.
    9. Mollison, Denis & Pontes, M.T., 1992. "Assessing the Portuguese wave-power resource," Energy, Elsevier, vol. 17(3), pages 255-268.
    10. Bernhoff, Hans & Sjöstedt, Elisabeth & Leijon, Mats, 2006. "Wave energy resources in sheltered sea areas: A case study of the Baltic Sea," Renewable Energy, Elsevier, vol. 31(13), pages 2164-2170.
    11. Bernardino, Mariana & Rusu, Liliana & Guedes Soares, C., 2017. "Evaluation of the wave energy resources in the Cape Verde Islands," Renewable Energy, Elsevier, vol. 101(C), pages 316-326.
    12. Folley, M. & Whittaker, T.J.T., 2009. "Analysis of the nearshore wave energy resource," Renewable Energy, Elsevier, vol. 34(7), pages 1709-1715.
    13. Astariz, S. & Iglesias, G., 2016. "Co-located wind and wave energy farms: Uniformly distributed arrays," Energy, Elsevier, vol. 113(C), pages 497-508.
    14. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2009. "Wave power potential along the Atlantic coast of the southeastern USA," Renewable Energy, Elsevier, vol. 34(10), pages 2197-2205.
    15. Simon Ambühl & Laurent Marquis & Jens Peter Kofoed & John Dalsgaard Sørensen, 2015. "Operation and maintenance strategies for wave energy converters," Journal of Risk and Reliability, , vol. 229(5), pages 417-441, October.
    16. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2014. "Assessment of wave energy in the Canary Islands," Renewable Energy, Elsevier, vol. 68(C), pages 774-784.
    17. Waters, Rafael & Engström, Jens & Isberg, Jan & Leijon, Mats, 2009. "Wave climate off the Swedish west coast," Renewable Energy, Elsevier, vol. 34(6), pages 1600-1606.
    18. Reeve, D.E. & Chen, Y. & Pan, S. & Magar, V. & Simmonds, D.J. & Zacharioudaki, A., 2011. "An investigation of the impacts of climate change on wave energy generation: The Wave Hub, Cornwall, UK," Renewable Energy, Elsevier, vol. 36(9), pages 2404-2413.
    19. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2014. "Wave energy conditions in the western French coast," Renewable Energy, Elsevier, vol. 62(C), pages 155-163.
    20. Mackay, Edward B.L. & Bahaj, AbuBakr S. & Challenor, Peter G., 2010. "Uncertainty in wave energy resource assessment. Part 1: Historic data," Renewable Energy, Elsevier, vol. 35(8), pages 1792-1808.
    21. Neill, Simon P. & Lewis, Matt J. & Hashemi, M. Reza & Slater, Emma & Lawrence, John & Spall, Steven A., 2014. "Inter-annual and inter-seasonal variability of the Orkney wave power resource," Applied Energy, Elsevier, vol. 132(C), pages 339-348.
    22. Smith, Helen C.M. & Pearce, Charles & Millar, Dean L., 2012. "Further analysis of change in nearshore wave climate due to an offshore wave farm: An enhanced case study for the Wave Hub site," Renewable Energy, Elsevier, vol. 40(1), pages 51-64.
    23. Kim, Gunwoo & Jeong, Weon Mu & Lee, Kwang Soo & Jun, Kicheon & Lee, Myung Eun, 2011. "Offshore and nearshore wave energy assessment around the Korean Peninsula," Energy, Elsevier, vol. 36(3), pages 1460-1469.
    24. Wang, Zhifeng & Dong, Sheng & Li, Xue & Guedes Soares, C., 2016. "Assessments of wave energy in the Bohai Sea, China," Renewable Energy, Elsevier, vol. 90(C), pages 145-156.
    25. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    26. Liberti, Luca & Carillo, Adriana & Sannino, Gianmaria, 2013. "Wave energy resource assessment in the Mediterranean, the Italian perspective," Renewable Energy, Elsevier, vol. 50(C), pages 938-949.
    27. Silva, Dina & Bento, A. Rute & Martinho, Paulo & Guedes Soares, C., 2015. "High resolution local wave energy modelling in the Iberian Peninsula," Energy, Elsevier, vol. 91(C), pages 1099-1112.
    28. Iglesias, G. & Carballo, R., 2010. "Offshore and inshore wave energy assessment: Asturias (N Spain)," Energy, Elsevier, vol. 35(5), pages 1964-1972.
    29. Stopa, Justin E. & Filipot, Jean-François & Li, Ning & Cheung, Kwok Fai & Chen, Yi-Leng & Vega, Luis, 2013. "Wave energy resources along the Hawaiian Island chain," Renewable Energy, Elsevier, vol. 55(C), pages 305-321.
    30. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    31. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2016. "High-Resolution Wave Energy Assessment in Shallow Water Accounting for Tides," Energies, MDPI, vol. 9(9), pages 1-19, September.
    32. Mediavilla, D.G. & Sepúlveda, H.H., 2016. "Nearshore assessment of wave energy resources in central Chile (2009–2010)," Renewable Energy, Elsevier, vol. 90(C), pages 136-144.
    33. Iglesias, G. & Carballo, R., 2010. "Wave energy and nearshore hot spots: The case of the SE Bay of Biscay," Renewable Energy, Elsevier, vol. 35(11), pages 2490-2500.
    34. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    2. Díaz, H. & Guedes Soares, C., 2022. "A novel multi-criteria decision-making model to evaluate floating wind farm locations," Renewable Energy, Elsevier, vol. 185(C), pages 431-454.
    3. Yang, Zhaoqing & García Medina, Gabriel & Neary, Vincent S. & Ahn, Seongho & Kilcher, Levi & Bharath, Aidan, 2023. "Multi-decade high-resolution regional hindcasts for wave energy resource characterization in U.S. coastal waters," Renewable Energy, Elsevier, vol. 212(C), pages 803-817.
    4. Zhang, Na & Li, Shuai & Wu, Yongsheng & Wang, Keh-Han & Zhang, Qinghe & You, Zai-Jin & Wang, Jin, 2020. "Effects of sea ice on wave energy flux distribution in the Bohai Sea," Renewable Energy, Elsevier, vol. 162(C), pages 2330-2343.
    5. Carballo, R. & Arean, N. & Álvarez, M. & López, I. & Castro, A. & López, M. & Iglesias, G., 2019. "Wave farm planning through high-resolution resource and performance characterization," Renewable Energy, Elsevier, vol. 135(C), pages 1097-1107.
    6. Shaobo Yang & Shanhua Duan & Linlin Fan & Chongwei Zheng & Xingfei Li & Hongyu Li & Jianjun Xu & Qiang Wang & Ming Feng, 2019. "10-Year Wind and Wave Energy Assessment in the North Indian Ocean," Energies, MDPI, vol. 12(20), pages 1-16, October.
    7. Sun, Peidong & Xu, Bin & Wang, Jichao, 2022. "Long-term trend analysis and wave energy assessment based on ERA5 wave reanalysis along the Chinese coastline," Applied Energy, Elsevier, vol. 324(C).
    8. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    9. Jahangir, Mohammad Hossein & Mazinani, Mehran, 2020. "Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea," Renewable Energy, Elsevier, vol. 152(C), pages 331-346.
    10. Fairley, Iain & Lewis, Matthew & Robertson, Bryson & Hemer, Mark & Masters, Ian & Horrillo-Caraballo, Jose & Karunarathna, Harshinie & Reeve, Dominic E., 2020. "A classification system for global wave energy resources based on multivariate clustering," Applied Energy, Elsevier, vol. 262(C).
    11. Clemente, D. & Rosa-Santos, P. & Ferradosa, T. & Taveira-Pinto, F., 2023. "Wave energy conversion energizing offshore aquaculture: Prospects along the Portuguese coastline," Renewable Energy, Elsevier, vol. 204(C), pages 347-358.
    12. Ribeiro, A.S. & deCastro, M. & Costoya, X. & Rusu, Liliana & Dias, J.M. & Gomez-Gesteira, M., 2021. "A Delphi method to classify wave energy resource for the 21st century: Application to the NW Iberian Peninsula," Energy, Elsevier, vol. 235(C).
    13. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2020. "Experimental investigation on hybrid mooring systems for wave energy converters," Renewable Energy, Elsevier, vol. 158(C), pages 130-153.
    14. Shi, Xueli & Liang, Bingchen & Du, Shengtao & Shao, Zhuxiao & Li, Shaowu, 2022. "Wave energy assessment in the China East Adjacent Seas based on a 25-year wave-current interaction numerical simulation," Renewable Energy, Elsevier, vol. 199(C), pages 1381-1407.
    15. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    16. Díaz, H. & Guedes Soares, C., 2020. "An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Majidi, Ajab Gul & Ramos, Victor & Amarouche, Khalid & Rosa Santos, Paulo & das Neves, Luciana & Taveira-Pinto, Francisco, 2023. "Assessing the impact of wave model calibration in the uncertainty of wave energy estimation," Renewable Energy, Elsevier, vol. 212(C), pages 415-429.
    18. Quero García, Pablo & Chica Ruiz, Juan Adolfo & García Sanabria, Javier, 2020. "Blue energy and marine spatial planning in Southern Europe," Energy Policy, Elsevier, vol. 140(C).
    19. Laura Castro-Santos & Dina Silva & A. Rute Bento & Nadia Salvação & C. Guedes Soares, 2018. "Economic Feasibility of Wave Energy Farms in Portugal," Energies, MDPI, vol. 11(11), pages 1-16, November.
    20. Shao, Zhuxiao & Gao, Huijun & Liang, Bingchen & Lee, Dongyoung, 2022. "Potential, trend and economic assessments of global wave power," Renewable Energy, Elsevier, vol. 195(C), pages 1087-1102.
    21. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2020. "Wave energy assessment based on a 33-year hindcast for the Canary Islands," Renewable Energy, Elsevier, vol. 152(C), pages 259-269.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    2. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    3. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2014. "Assessment of wave energy in the Canary Islands," Renewable Energy, Elsevier, vol. 68(C), pages 774-784.
    4. Sierra, Joan Pau & White, Adam & Mösso, Cesar & Mestres, Marc, 2017. "Assessment of the intra-annual and inter-annual variability of the wave energy resource in the Bay of Biscay (France)," Energy, Elsevier, vol. 141(C), pages 853-868.
    5. Alonso, Rodrigo & Solari, Sebastián & Teixeira, Luis, 2015. "Wave energy resource assessment in Uruguay," Energy, Elsevier, vol. 93(P1), pages 683-696.
    6. Ramos, V. & Ringwood, John V., 2016. "Exploring the utility and effectiveness of the IEC (International Electrotechnical Commission) wave energy resource assessment and characterisation standard: A case study," Energy, Elsevier, vol. 107(C), pages 668-682.
    7. Zhou, Guoqing & Huang, Jingjin & Zhang, Guangyun, 2015. "Evaluation of the wave energy conditions along the coastal waters of Beibu Gulf, China," Energy, Elsevier, vol. 85(C), pages 449-457.
    8. Iglesias, G. & Carballo, R., 2011. "Choosing the site for the first wave farm in a region: A case study in the Galician Southwest (Spain)," Energy, Elsevier, vol. 36(9), pages 5525-5531.
    9. Abanades, J. & Greaves, D. & Iglesias, G., 2015. "Coastal defence using wave farms: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 75(C), pages 572-582.
    10. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    11. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.
    12. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2018. "A 33-year hindcast on wave energy assessment in the western French coast," Energy, Elsevier, vol. 165(PB), pages 790-801.
    13. Sierra, J.P. & Mösso, C. & González-Marco, D., 2014. "Wave energy resource assessment in Menorca (Spain)," Renewable Energy, Elsevier, vol. 71(C), pages 51-60.
    14. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    15. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    16. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    17. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    18. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    19. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    20. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2014. "Wave energy conditions in the western French coast," Renewable Energy, Elsevier, vol. 62(C), pages 155-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:1064-1075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.