IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v24y2001i2p303-317.html
   My bibliography  Save this article

Thermal performance of myristic acid as a phase change material for energy storage application

Author

Listed:
  • Sarı, Ahmet
  • Kaygusuz, Kamil

Abstract

Thermal performance and phase change stability of myristic acid as a latent heat energy storage material has been studied experimentally. In the experimental study, the thermal performance and heat transfer characteristics of the myristic acid were tested and compared with other studies given in the literature. In the present study is included some parameters such as transition times, temperature range, and propagation of the solid–liquid interface as well as heat flow rate effect on the phase change stability of myristic acid as a phase change material (PCM). The experimental results showed that the melting stability of the PCM is better in the radial direction than the axial direction. The variety of the melting and solidification parameters of the PCM with the change of inlet water temperature is also studied. The results show that the better stability of the myristic acid was accomplished at low inlet water temperature compared with the obtained results at high inlet water temperature. We also observed that while the heat exchanger tube is in the horizontal position, the PCM has more effective and steady phase change characteristics than in the vertical position. The heat storage capacity of the container (PCM tube) is not as good as we expected in this study and the average heat storage efficiency (or heat exchanger effectiveness) is 54%. It means that 46% of the heat acrually lost somewhere.

Suggested Citation

  • Sarı, Ahmet & Kaygusuz, Kamil, 2001. "Thermal performance of myristic acid as a phase change material for energy storage application," Renewable Energy, Elsevier, vol. 24(2), pages 303-317.
  • Handle: RePEc:eee:renene:v:24:y:2001:i:2:p:303-317
    DOI: 10.1016/S0960-1481(00)00167-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148100001671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(00)00167-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasan, A. & Sayigh, A.A., 1994. "Some fatty acids as phase-change thermal energy storage materials," Renewable Energy, Elsevier, vol. 4(1), pages 69-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karaipekli, Ali & Sarı, Ahmet, 2008. "Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 33(12), pages 2599-2605.
    2. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    3. Yuan, Yanping & Zhang, Nan & Tao, Wenquan & Cao, Xiaoling & He, Yaling, 2014. "Fatty acids as phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 482-498.
    4. Bilgen, Selçuk & Keles, Sedat & Kaygusuz, Abdullah & SarI, Ahmet & Kaygusuz, Kamil, 2008. "Global warming and renewable energy sources for sustainable development: A case study in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 372-396, February.
    5. Meysam Nazari & Mohamed Jebrane & Nasko Terziev, 2020. "Bio-Based Phase Change Materials Incorporated in Lignocellulose Matrix for Energy Storage in Buildings—A Review," Energies, MDPI, vol. 13(12), pages 1-25, June.
    6. Cai, Yibing & Gao, Chuntao & Zhang, Ting & Zhang, Zhen & Wei, Qufu & Du, Jinmei & Hu, Yuan & Song, Lei, 2013. "Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats," Renewable Energy, Elsevier, vol. 57(C), pages 163-170.
    7. Sarı, A & Kaygusuz, K, 2003. "Some fatty acids used for latent heat storage: thermal stability and corrosion of metals with respect to thermal cycling," Renewable Energy, Elsevier, vol. 28(6), pages 939-948.
    8. Sharma, Atul & Won, Lee Dong & Buddhi, D & Park, Jun Un, 2005. "Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system," Renewable Energy, Elsevier, vol. 30(14), pages 2179-2187.
    9. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    10. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    11. Liu, Chenzhen & Cheng, Qingjiang & Li, Baohuan & Liu, Xinjian & Rao, Zhonghao, 2023. "Recent advances of sugar alcohols phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Karaipekli, Ali & Sarı, Ahmet & Kaygusuz, Kamil, 2007. "Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications," Renewable Energy, Elsevier, vol. 32(13), pages 2201-2210.
    13. Park, Sangki & Woo, Seungchul & Shon, Jungwook & Lee, Kihyung, 2017. "Experimental study on heat storage system using phase-change material in a diesel engine," Energy, Elsevier, vol. 119(C), pages 1108-1118.
    14. İnce, Şeyma & Seki, Yoldas & Akif Ezan, Mehmet & Turgut, Alpaslan & Erek, Aytunc, 2015. "Thermal properties of myristic acid/graphite nanoplates composite phase change materials," Renewable Energy, Elsevier, vol. 75(C), pages 243-248.
    15. He, Hongtao & Zhao, Pin & Yue, Qinyan & Gao, Baoyu & Yue, Dongting & Li, Qian, 2015. "A novel polynary fatty acid/sludge ceramsite composite phase change materials and its applications in building energy conservation," Renewable Energy, Elsevier, vol. 76(C), pages 45-52.
    16. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    17. Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
    18. Li, Min & Kao, Hongtao & Wu, Zhishen & Tan, Jinmiao, 2011. "Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials," Applied Energy, Elsevier, vol. 88(5), pages 1606-1612, May.
    19. Tunçbilek, Kadir & Sari, Ahmet & Tarhan, Sefa & Ergüneş, Gazanfer & Kaygusuz, Kamil, 2005. "Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications," Energy, Elsevier, vol. 30(5), pages 677-692.
    20. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 581-596.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tunçbilek, Kadir & Sari, Ahmet & Tarhan, Sefa & Ergüneş, Gazanfer & Kaygusuz, Kamil, 2005. "Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications," Energy, Elsevier, vol. 30(5), pages 677-692.
    2. Karaipekli, Ali & Sarı, Ahmet & Kaygusuz, Kamil, 2007. "Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications," Renewable Energy, Elsevier, vol. 32(13), pages 2201-2210.
    3. Motte, F. & Notton, G. & Lamnatou, Chr & Cristofari, C. & Chemisana, D., 2019. "Numerical study of PCM integration impact on overall performances of a highly building-integrated solar collector," Renewable Energy, Elsevier, vol. 137(C), pages 10-19.
    4. Haiming Long & Yunkun Lu & Liang Chang & Haifeng Zhang & Jingcen Zhang & Gaoqun Zhang & Junjie Hao, 2022. "Molecular Dynamics Simulation of Thermophysical Properties and the Microstructure of Na 2 CO 3 Heat Storage Materials," Energies, MDPI, vol. 15(19), pages 1-13, September.
    5. Teggar, Mohamed & Laouer, Abdelghani & Benhorma, Amani & Goudjil, Houssem & Arıcı, Müslüm & Ismail, Kamal AR & Mekhilef, Saad & Mezaache, El Hacene & Tahouri, Tahar, 2023. "Perspective role of phase change materials for energy efficiency in Algeria," Renewable Energy, Elsevier, vol. 217(C).
    6. Cai, Yibing & Gao, Chuntao & Zhang, Ting & Zhang, Zhen & Wei, Qufu & Du, Jinmei & Hu, Yuan & Song, Lei, 2013. "Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats," Renewable Energy, Elsevier, vol. 57(C), pages 163-170.
    7. Golestaneh, Seyyed Iman & Karimi, Gholamreza & Babapoor, Aziz & Torabi, Farshid, 2018. "Thermal performance of co-electrospun fatty acid nanofiber composites in the presence of nanoparticles," Applied Energy, Elsevier, vol. 212(C), pages 552-564.
    8. Karaipekli, Ali & Sarı, Ahmet, 2008. "Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 33(12), pages 2599-2605.
    9. Wu, Shuangmao & Fang, Guiyin & Liu, Xu, 2011. "Dynamic discharging characteristics simulation on solar heat storage system with spherical capsules using paraffin as heat storage material," Renewable Energy, Elsevier, vol. 36(4), pages 1190-1195.
    10. Fang, Guiyin & Li, Hui & Chen, Zhi & Liu, Xu, 2010. "Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials," Energy, Elsevier, vol. 35(12), pages 4622-4626.
    11. Rathod, Manish K. & Banerjee, Jyotirmay, 2013. "Thermal stability of phase change materials used in latent heat energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 246-258.
    12. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
    13. M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
    14. Al-Jandal, S.S. & Sayigh, A.A.M., 1994. "Thermal performance characteristics of STC system with Phase Change Storage," Renewable Energy, Elsevier, vol. 5(1), pages 390-399.
    15. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. İnce, Şeyma & Seki, Yoldas & Akif Ezan, Mehmet & Turgut, Alpaslan & Erek, Aytunc, 2015. "Thermal properties of myristic acid/graphite nanoplates composite phase change materials," Renewable Energy, Elsevier, vol. 75(C), pages 243-248.
    17. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    18. Shukla, Anant & Buddhi, D. & Sawhney, R.L., 2008. "Thermal cycling test of few selected inorganic and organic phase change materials," Renewable Energy, Elsevier, vol. 33(12), pages 2606-2614.
    19. Oró, Eduard & Barreneche, Camila & Farid, Mohammed M. & Cabeza, Luisa F., 2013. "Experimental study on the selection of phase change materials for low temperature applications," Renewable Energy, Elsevier, vol. 57(C), pages 130-136.
    20. Zain Ul Abdin & Ahmed Rachid, 2021. "A Survey on Applications of Hybrid PV/T Panels," Energies, MDPI, vol. 14(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:24:y:2001:i:2:p:303-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.