IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3548-d1695212.html
   My bibliography  Save this article

Thermal Energy Storage in Bio-Inspired PCM-Based Systems

Author

Listed:
  • Kinga Pielichowska

    (Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland)

  • Martyna Szatkowska

    (Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland)

  • Krzysztof Pielichowski

    (Faculty of Chemical Engineering and Technology, Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
    Interdisciplinary Center for Circular Economy, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland)

Abstract

Continuous growth in energy demand is observed throughout the world, with simultaneous rapid consumption of fossil fuels. New effective technologies and systems are needed that allow for a significant increase in the use of renewable energy sources, such as the sun, wind, biomass, and sea tides. Currently, one of the main research challenges refers to thermal energy management, taking into account the discontinuity and intermittency of both energy supply and demand. Phase change materials (PCMs) are a useful solution in the design and manufacturing of multifunctional materials for energy storage technologies such as solar cells and photovoltaic systems. In order to design efficient PCM-based systems for energy applications, ideas and behaviors from nature should be taken account as it has created over millions of years a plethora of unique structures and morphologies in complex hierarchical materials. Inspirations for nature have been applied to improve and adjust the properties of materials for energy conversion and storage as well as in the design of advanced energy systems. Therefore, this review presents recent developments in biomimetic and bio-inspired multifunctional phase change materials for the energy storage and conversion of different types of renewable energy to thermal or electrical energy. Future outlooks are also provided to initiate integrated interdisciplinary bio-inspired efforts in the field of modern sustainable PCM technologies.

Suggested Citation

  • Kinga Pielichowska & Martyna Szatkowska & Krzysztof Pielichowski, 2025. "Thermal Energy Storage in Bio-Inspired PCM-Based Systems," Energies, MDPI, vol. 18(13), pages 1-28, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3548-:d:1695212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3548/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3548/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Ming Jun & Hewitt, Neil J., 2024. "An experimental investigation into the use of biomimetic methods for thermal regulation and heat retention with PCMs in buildings," Renewable Energy, Elsevier, vol. 236(C).
    2. August, Anastasia & Kneer, Aron & Reiter, Andreas & Wirtz, Michael & Sarsour, Jamal & Stegmaier, Thomas & Barbe, Stéphan & Gresser, Götz T. & Nestler, Britta, 2019. "A bionic approach for heat generation and latent heat storage inspired by the polar bear," Energy, Elsevier, vol. 168(C), pages 1017-1030.
    3. Ferreira, G.F. & Ríos Pinto, L.F. & Maciel Filho, R. & Fregolente, L.V., 2019. "A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 448-466.
    4. Huang, Yongping & Deng, Zilong & Chen, Yongping & Zhang, Chengbin, 2023. "Performance investigation of a biomimetic latent heat thermal energy storage device for waste heat recovery in data centers," Applied Energy, Elsevier, vol. 335(C).
    5. Yuan, Yanping & Zhang, Nan & Tao, Wenquan & Cao, Xiaoling & He, Yaling, 2014. "Fatty acids as phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 482-498.
    6. Yao, Haichen & Liu, Xianglei & Li, Jiawei & Luo, Qingyang & Tian, Yang & Xuan, Yimin, 2023. "Chloroplast-granum inspired phase change capsules accelerate energy storage of packed-bed thermal energy storage system," Energy, Elsevier, vol. 284(C).
    7. Hasan, A. & Sayigh, A.A., 1994. "Some fatty acids as phase-change thermal energy storage materials," Renewable Energy, Elsevier, vol. 4(1), pages 69-76.
    8. Rafał Twaróg & Piotr Szatkowski & Kinga Pielichowska, 2025. "Phase Change Materials in Electrothermal Conversion Systems: A Review," Energies, MDPI, vol. 18(3), pages 1-41, January.
    9. Dong, Yan & Wang, Fuqiang & Zhang, Yaqi & Shi, Xuhang & Zhang, Aoyu & Shuai, Yong, 2022. "Experimental and numerical study on flow characteristic and thermal performance of macro-capsules phase change material with biomimetic oval structure," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xibo & Wang, Wei & Shuai, Yong & Hou, Yicheng & Qiu, Jun, 2025. "Cross-scale thermal analysis and comprehensive evaluation of biomimetic skin-flesh composite phase change material for waste heat recovery," Energy, Elsevier, vol. 314(C).
    2. Golestaneh, Seyyed Iman & Karimi, Gholamreza & Babapoor, Aziz & Torabi, Farshid, 2018. "Thermal performance of co-electrospun fatty acid nanofiber composites in the presence of nanoparticles," Applied Energy, Elsevier, vol. 212(C), pages 552-564.
    3. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Chen, Xudong & Zhang, Jingyu & Zou, Huichuan & Zhang, Guoliang & Zhang, Aoyu & Dong, Yan & Liang, Huaxu & Wang, Fuqiang, 2024. "Enhancing performance in heat storage unit and packed-bed system: Novel capsule designs inspired by drop structure," Energy, Elsevier, vol. 313(C).
    5. Browne, Maria C. & Boyd, Ellen & McCormack, Sarah J., 2017. "Investigation of the corrosive properties of phase change materials in contact with metals and plastic," Renewable Energy, Elsevier, vol. 108(C), pages 555-568.
    6. Gao, Qiang & Lu, Yue & Liu, Xiangdong & Chen, Yongping, 2024. "A novel pulse liquid immersion cooling strategy for Lithium-ion battery pack," Energy, Elsevier, vol. 310(C).
    7. Xu, Yang & Li, Ming-Jia & Zheng, Zhang-Jing & Xue, Xiao-Dai, 2018. "Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment," Applied Energy, Elsevier, vol. 212(C), pages 868-880.
    8. Bao, Yuchen & Zhou, Haojie & Li, Ji, 2024. "Physics-based machine learning optimization of thermoelectric assembly for maximizing waste heat recovery," Energy, Elsevier, vol. 307(C).
    9. Zhang, Nan & Yuan, Yanping & Du, Yanxia & Cao, Xiaoling & Yuan, Yaguang, 2014. "Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage," Energy, Elsevier, vol. 78(C), pages 950-956.
    10. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Tunçbilek, Kadir & Sari, Ahmet & Tarhan, Sefa & Ergüneş, Gazanfer & Kaygusuz, Kamil, 2005. "Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications," Energy, Elsevier, vol. 30(5), pages 677-692.
    12. Shi, Xuhang & Li, Chunzhe & Yang, Zhenning & Xu, Jie & Song, Jintao & Wang, Fuqiang & Shuai, Yong & Zhang, Wenjing, 2024. "Egg-tray-inspired concave foam structure on pore-scale space radiation regulation for enhancing photo-thermal-chemical synergistic conversion," Energy, Elsevier, vol. 297(C).
    13. Zhang, Yi & Tao, Wen & Wang, Kehan & Li, Dongxu, 2020. "Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica," Renewable Energy, Elsevier, vol. 149(C), pages 400-408.
    14. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    15. Yuan, Yanping & Zhang, Nan & Li, Tianyu & Cao, Xiaoling & Long, Weiyue, 2016. "Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study," Energy, Elsevier, vol. 97(C), pages 488-497.
    16. Tang, Yong & Wang, Zhichao & Zhou, Jinzhi & Zeng, Chao & Lyu, Weihua & Lu, Lin & Yuan, Yanping, 2024. "Experimental study on the performance of packed-bed latent thermal energy storage system employing spherical capsules with hollow channels," Energy, Elsevier, vol. 293(C).
    17. Karaipekli, Ali & Sarı, Ahmet & Kaygusuz, Kamil, 2007. "Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications," Renewable Energy, Elsevier, vol. 32(13), pages 2201-2210.
    18. Liu, Lijun & Zhang, Quan & Zou, Sikai & Du, Sheng & Meng, Fanxi, 2023. "Experimental study on dynamic thermal characteristics of novel thermosyphon with latent thermal energy storage condenser," Energy, Elsevier, vol. 282(C).
    19. Tian, Yang & Ji, Mingxi & Qin, Xinliang & Yang, Chun & Liu, Xianglei, 2024. "Self-growing bionic leaf-vein fins for high-power-density and high-efficiency latent heat thermal energy storage," Energy, Elsevier, vol. 309(C).
    20. Gunasekara, Saman Nimali & Martin, Viktoria & Chiu, Justin Ningwei, 2017. "Phase equilibrium in the design of phase change materials for thermal energy storage: State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 558-581.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3548-:d:1695212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.