IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123011187.html
   My bibliography  Save this article

Perspective role of phase change materials for energy efficiency in Algeria

Author

Listed:
  • Teggar, Mohamed
  • Laouer, Abdelghani
  • Benhorma, Amani
  • Goudjil, Houssem
  • Arıcı, Müslüm
  • Ismail, Kamal AR
  • Mekhilef, Saad
  • Mezaache, El Hacene
  • Tahouri, Tahar

Abstract

Various measures have been considered in Algeria to improve energy efficiency but other effective ways are promising such as integration of phase change materials. The potential of these smart materials is reviewed for energy efficiency improvement in various systems including energy storage, refrigeration, and air conditioning, building envelope as well as cooling of photovoltaic systems. The literature review shows the high potential of this new class of materials. The survey indicates up to 12% energy savings due to integration of these new materials in refrigeration, 17.82% for air conditioning systems, and 10% for photovoltaics. The highest impact was achieved for the building envelope where energy savings of 34.8% were reported. On the other hand, limitations, challenges, and future concerns are revealed and highlighted for both researchers and policy-makers. New eco-friendly materials should be searched and adapted to the Algerian climate zones. Artificial intelligence can be a handy tool for material selection and optimization of thermal performance. Investment should be implemented together with adequate policy and awareness. Finally, the Algerian building regulations should be updated to include this new class of materials in buildings.

Suggested Citation

  • Teggar, Mohamed & Laouer, Abdelghani & Benhorma, Amani & Goudjil, Houssem & Arıcı, Müslüm & Ismail, Kamal AR & Mekhilef, Saad & Mezaache, El Hacene & Tahouri, Tahar, 2023. "Perspective role of phase change materials for energy efficiency in Algeria," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011187
    DOI: 10.1016/j.renene.2023.119203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mi, Xuming & Liu, Ran & Cui, Hongzhi & Memon, Shazim Ali & Xing, Feng & Lo, Yiu, 2016. "Energy and economic analysis of building integrated with PCM in different cities of China," Applied Energy, Elsevier, vol. 175(C), pages 324-336.
    2. Wang, Huakeer & Lu, Wei & Wu, Zhigen & Zhang, Guanhua, 2020. "Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai," Renewable Energy, Elsevier, vol. 145(C), pages 52-64.
    3. Yuan, Weiqi & Ji, Jie & Modjinou, Mawufemo & Zhou, Fan & Li, Zhaomeng & Song, Zhiying & Huang, Shengjuan & Zhao, Xudong, 2018. "Numerical simulation and experimental validation of the solar photovoltaic/thermal system with phase change material," Applied Energy, Elsevier, vol. 232(C), pages 715-727.
    4. Makhloufi, Saida & Khennas, Smail & Bouchaib, Sami & Arab, Amar Hadj, 2022. "Multi-objective cuckoo search algorithm for optimized pathways for 75 % renewable electricity mix by 2050 in Algeria," Renewable Energy, Elsevier, vol. 185(C), pages 1410-1424.
    5. Xia, Mingzhu & Yuan, Yanping & Zhao, Xudong & Cao, Xiaoling & Tang, Zhonghua, 2016. "Cold storage condensation heat recovery system with a novel composite phase change material," Applied Energy, Elsevier, vol. 175(C), pages 259-268.
    6. Lee, Kyoung Ok & Medina, Mario A. & Raith, Erik & Sun, Xiaoqin, 2015. "Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management," Applied Energy, Elsevier, vol. 137(C), pages 699-706.
    7. Mishra, Amit Kumar & Lahiri, B.B. & Philip, John, 2020. "Carbon black nano particle loaded lauric acid-based form-stable phase change material with enhanced thermal conductivity and photo-thermal conversion for thermal energy storage," Energy, Elsevier, vol. 191(C).
    8. Karthick, A. & Murugavel, K. Kalidasa & Ramanan, P., 2018. "Performance enhancement of a building-integrated photovoltaic module using phase change material," Energy, Elsevier, vol. 142(C), pages 803-812.
    9. Abdolmaleki, L. & Sadrameli, S.M. & Pirvaram, A., 2020. "Application of environmental friendly and eutectic phase change materials for the efficiency enhancement of household freezers," Renewable Energy, Elsevier, vol. 145(C), pages 233-241.
    10. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Mousavi, Soroush & Rajaee, Fatemeh & Kouravand, Amir, 2021. "Empirical investigation of a photovoltaic-thermal system with phase change materials and aluminum shavings porous media," Renewable Energy, Elsevier, vol. 167(C), pages 662-675.
    11. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    12. Damien Mathis & Pierre Blanchet & Philippe Lagière & Véronic Landry, 2018. "Performance of Wood-Based Panels Integrated with a Bio-Based Phase Change Material: A Full-Scale Experiment in a Cold Climate with Timber-Frame Huts," Energies, MDPI, vol. 11(11), pages 1-15, November.
    13. Boukelia, Taqiy eddine & Mecibah, Mohamed-Salah, 2013. "Parabolic trough solar thermal power plant: Potential, and projects development in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 288-297.
    14. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    15. Al-Jethelah, Manar & Tasnim, Syeda Humaira & Mahmud, Shohel & Dutta, Animesh, 2018. "Nano-PCM filled energy storage system for solar-thermal applications," Renewable Energy, Elsevier, vol. 126(C), pages 137-155.
    16. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    17. Hasan, A. & Sayigh, A.A., 1994. "Some fatty acids as phase-change thermal energy storage materials," Renewable Energy, Elsevier, vol. 4(1), pages 69-76.
    18. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deka, Manash Jyoti & Kamble, Akash Dilip & Das, Dudul & Sharma, Prabhakar & Ali, Shahadath & Kalita, Paragmoni & Bora, Bhaskor Jyoti & Kalita, Pankaj, 2024. "Enhancing the performance of a photovoltaic thermal system with phase change materials: Predictive modelling and evaluation using neural networks," Renewable Energy, Elsevier, vol. 224(C).
    2. B, Prabhu & A, Valan Arasu & P, Gurusamy & A, Amala Mithin Minther Singh & T, Arunkumar, 2024. "Solar photovoltaic cooling using Paraffin phase change material: Comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Kazemian, Arash & Khatibi, Meysam & Reza Maadi, Seyed & Ma, Tao, 2021. "Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material," Applied Energy, Elsevier, vol. 295(C).
    4. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    7. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    8. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    9. Cui, Hongzhi & Tang, Waiching & Qin, Qinghua & Xing, Feng & Liao, Wenyu & Wen, Haibo, 2017. "Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball," Applied Energy, Elsevier, vol. 185(P1), pages 107-118.
    10. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    11. Cai, Yibing & Gao, Chuntao & Zhang, Ting & Zhang, Zhen & Wei, Qufu & Du, Jinmei & Hu, Yuan & Song, Lei, 2013. "Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats," Renewable Energy, Elsevier, vol. 57(C), pages 163-170.
    12. Wijesuriya, Sajith & Brandt, Matthew & Tabares-Velasco, Paulo Cesar, 2018. "Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate," Applied Energy, Elsevier, vol. 222(C), pages 497-514.
    13. Wei, Lien Chin & Malen, Jonathan A., 2016. "Amplified charge and discharge rates in phase change materials for energy storage using spatially-enhanced thermal conductivity," Applied Energy, Elsevier, vol. 181(C), pages 224-231.
    14. Rathod, Manish K. & Banerjee, Jyotirmay, 2013. "Thermal stability of phase change materials used in latent heat energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 246-258.
    15. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2021. "Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate," Energy, Elsevier, vol. 220(C).
    16. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
    17. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. İnce, Şeyma & Seki, Yoldas & Akif Ezan, Mehmet & Turgut, Alpaslan & Erek, Aytunc, 2015. "Thermal properties of myristic acid/graphite nanoplates composite phase change materials," Renewable Energy, Elsevier, vol. 75(C), pages 243-248.
    19. Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
    20. Iten, Muriel & Liu, Shuli & Shukla, Ashish, 2016. "A review on the air-PCM-TES application for free cooling and heating in the buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 175-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.