IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v142y2018icp803-812.html
   My bibliography  Save this article

Performance enhancement of a building-integrated photovoltaic module using phase change material

Author

Listed:
  • Karthick, A.
  • Murugavel, K. Kalidasa
  • Ramanan, P.

Abstract

The performance of Building integrated photovoltaic (BIPV) depends on the incident solar radiation, photovoltaic (PV) cell temperature, location and orientations of the building. In this work, the building integrated photovoltaic–phase change material (BIPV–PCM) module has been developed to enhance the performance of the BIPV system by regulating its PV cell temperature using PCM. The BIPV and BIPV-PCM system performance has been assessed outdoors by installing it on the facades of experimental room at Kovilpatti (9°10′0″N, 77°52′0″E), Tamil Nadu, and India. The thermal regulation of the system is provided with inorganic glauber salt (Na2SO4·10H2O) phase change material (PCM). The improvement in electrical and thermal performance of the BIPV due to the incorporation of PCM is studied. The various parameters such as power generation, solar heat gain, module surface temperatures and electrical efficiency are analysed. On observation, it is found that BIPV-PCM maintained lower peak instantaneous temperature than the reference BIPV, leading to improved BIPV-PCM cell conversion efficiencies. The experimental results show that BIPV- PCM electrical efficiency is increased by 10% while its surface temperature is reduced up to 8 °C than the reference BIPV module.

Suggested Citation

  • Karthick, A. & Murugavel, K. Kalidasa & Ramanan, P., 2018. "Performance enhancement of a building-integrated photovoltaic module using phase change material," Energy, Elsevier, vol. 142(C), pages 803-812.
  • Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:803-812
    DOI: 10.1016/j.energy.2017.10.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217317954
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1342-1351.
    2. Ahmad Hasan & Sarah Josephine McCormack & Ming Jun Huang & Brian Norton, 2014. "Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics," Energies, MDPI, vol. 7(3), pages 1-14, March.
    3. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
    4. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    5. Royo, Patricia & Ferreira, Víctor J. & López-Sabirón, Ana M. & Ferreira, Germán, 2016. "Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials," Energy, Elsevier, vol. 101(C), pages 174-189.
    6. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    7. Ma, Tao & Yang, Hongxing & Zhang, Yinping & Lu, Lin & Wang, Xin, 2015. "Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1273-1284.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dushan Fernando & Satheeskumar Navaratnam & Pathmanathan Rajeev & Jay Sanjayan, 2023. "Study of Technological Advancement and Challenges of Façade System for Sustainable Building: Current Design Practice," Sustainability, MDPI, vol. 15(19), pages 1-33, September.
    2. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2021. "Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate," Energy, Elsevier, vol. 220(C).
    3. Adibpour, S. & Raisi, A. & Ghasemi, B. & Sajadi, A.R. & Rosengarten, G., 2021. "Experimental investigation of the performance of a sun tracking photovoltaic panel with Phase Change Material," Renewable Energy, Elsevier, vol. 165(P1), pages 321-333.
    4. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Sivashankar, M. & Selvam, C. & Manikandan, S. & Harish, Sivasankaran, 2020. "Performance improvement in concentrated photovoltaics using nano-enhanced phase change material with graphene nanoplatelets," Energy, Elsevier, vol. 208(C).
    6. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    7. Geng, Xiaoye & Li, Wei & Yin, Qing & Wang, Yu & Han, Na & Wang, Ning & Bian, Junmin & Wang, Jianping & Zhang, Xingxiang, 2018. "Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity," Energy, Elsevier, vol. 159(C), pages 857-869.
    8. Manoj Kumar Pasupathi & Karthick Alagar & Michael Joseph Stalin P & Matheswaran M.M & Ghosh Aritra, 2020. "Characterization of Hybrid-nano/Paraffin Organic Phase Change Material for Thermal Energy Storage Applications in Solar Thermal Systems," Energies, MDPI, vol. 13(19), pages 1-15, September.
    9. Karthick, A. & Kalidasa Murugavel, K. & Kalaivani, L., 2018. "Performance analysis of semitransparent photovoltaic module for skylights," Energy, Elsevier, vol. 162(C), pages 798-812.
    10. Wang, Yan & Yu, Kaixiang & Peng, Hao & Ling, Xiang, 2019. "Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage," Energy, Elsevier, vol. 167(C), pages 269-274.
    11. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    12. Govindasamy, Dhanusiya & Kumar, Ashwani, 2023. "Experimental analysis of solar panel efficiency improvement with composite phase change materials," Renewable Energy, Elsevier, vol. 212(C), pages 175-184.
    13. Ko, Jinyoung & Jeong, Jae-Weon, 2021. "Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Foteinis, Spyros & Savvakis, Nikolaos & Tsoutsos, Theocharis, 2023. "Energy and environmental performance of photovoltaic cooling using phase change materials under the Mediterranean climate," Energy, Elsevier, vol. 265(C).
    15. Alagar Karthick & Muthu Manokar Athikesavan & Manoj Kumar Pasupathi & Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aritra Ghosh, 2020. "Investigation of Inorganic Phase Change Material for a Semi-Transparent Photovoltaic (STPV) Module," Energies, MDPI, vol. 13(14), pages 1-12, July.
    16. Juan Duan & Yongliang Xiong & Dan Yang, 2019. "On the Melting Process of the Phase Change Material in Horizontal Rectangular Enclosures," Energies, MDPI, vol. 12(16), pages 1-21, August.
    17. Liang, Ruobing & Pan, Qiangguang & Wang, Peng & Zhang, Jili, 2018. "Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump," Energy, Elsevier, vol. 161(C), pages 744-752.
    18. Han, Weifang & Ge, Chunhua & Zhang, Rui & Ma, Zhiyan & Wang, Lixia & Zhang, Xiangdong, 2019. "Boron nitride foam as a polymer alternative in packaging phase change materials: Synthesis, thermal properties and shape stability," Applied Energy, Elsevier, vol. 238(C), pages 942-951.
    19. Khanna, Sourav & Singh, Preeti & Mudgal, Vijay & Newar, Sanjeev & Sharma, Vashi & Becerra, Victor & Reddy, K.S. & Mallick, Tapas K., 2022. "Novel thermal conductivity enhancing containers for performance enhancement of solar photovoltaics system integrated with phase change material," Energy, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    2. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    3. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2021. "Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate," Energy, Elsevier, vol. 220(C).
    4. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    5. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    6. Ahmad Hasan & Hamza Alnoman & Ali Hasan Shah, 2016. "Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery," Energies, MDPI, vol. 9(10), pages 1-15, September.
    7. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    8. Hernandez-Perez, J.G. & Carrillo, J.G. & Bassam, A. & Flota-Banuelos, M. & Patino-Lopez, L.D., 2020. "A new passive PV heatsink design to reduce efficiency losses: A computational and experimental evaluation," Renewable Energy, Elsevier, vol. 147(P1), pages 1209-1220.
    9. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    10. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1342-1351.
    11. Hachem, Farouk & Abdulhay, Bakri & Ramadan, Mohamad & El Hage, Hicham & El Rab, Mostafa Gad & Khaled, Mahmoud, 2017. "Improving the performance of photovoltaic cells using pure and combined phase change materials – Experiments and transient energy balance," Renewable Energy, Elsevier, vol. 107(C), pages 567-575.
    12. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    13. Karami, Babak & Azimi, Neda & Ahmadi, Shahin, 2021. "Increasing the electrical efficiency and thermal management of a photovoltaic module using expanded graphite (EG)/paraffin-beef tallow-coconut oil composite as phase change material," Renewable Energy, Elsevier, vol. 178(C), pages 25-49.
    14. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    15. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Saxena, Ashish & Deshmukh, Sandip & Nirali, Somanath & Wani, Saurabh, 2018. "Laboratory based Experimental Investigation of Photovoltaic (PV) Thermo-control with Water and its Proposed Real-time Implementation," Renewable Energy, Elsevier, vol. 115(C), pages 128-138.
    17. Lin, Wenye & Ma, Zhenjun, 2016. "Using Taguchi-Fibonacci search method to optimize phase change materials enhanced buildings with integrated solar photovoltaic thermal collectors," Energy, Elsevier, vol. 106(C), pages 23-37.
    18. Said, Zafar & Arora, Sahil & Bellos, Evangelos, 2018. "A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 302-316.
    19. Pablo Casado & José M. Blanes & Francisco Javier Aguilar Valero & Cristian Torres & Manuel Lucas Miralles & Javier Ruiz Ramírez, 2021. "Photovoltaic Evaporative Chimney I–V Measurement System," Energies, MDPI, vol. 14(24), pages 1-14, December.
    20. Ruiz, J. & Martínez, P. & Sadafi, H. & Aguilar, F.J. & Vicente, P.G. & Lucas, M., 2020. "Experimental characterization of a photovoltaic solar-driven cooling system based on an evaporative chimney," Renewable Energy, Elsevier, vol. 161(C), pages 43-54.

    More about this item

    Keywords

    BIPV; PCM; Façade; Glauber salt;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:803-812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.