IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp314-342.html
   My bibliography  Save this article

Analysis and proposal of energy planning and renewable energy plans in South America: Case study of Ecuador

Author

Listed:
  • Icaza, Daniel
  • Borge-Diez, David
  • Galindo, Santiago Pulla

Abstract

This research evaluates the South American Electric Energy System and its features related to the inclusion of renewable energies into the transition processes to leave fossil fuel-based energy systems behind. Analysis of the Ecuadorian case is a novel approach because in the first instance its matrix was based on the use of fossil fuels, with dire consequences of pollution, especially in the Amazon. Interest is growing in terms of economic, legal and social renewal, leaving behind the rapidly depleting oil systems which have been a polluting source. This research presents a novel analysis of the state of the Ecuadorian electricity system and after a flexible analysis in Energyplan, proposes the feasible renewable energy sources and their shares to guarantee the new demand in 2050 and an Ecuadorian 100% renewable electricity generation system, having a positive impact on the monetary, increasing production levels and improving the quality of life of its citizens. Installed power by 2050 is expected to be 20 GW and will require an annual production of 72.24 TWh. Hydro (6.02 GW), solar PV (5.7 GW) and wind (5.61 GW) will have the most impact on the Ecuadorian energy matrix. The average production cost of 1 MWh will be approximately 18 US cents.

Suggested Citation

  • Icaza, Daniel & Borge-Diez, David & Galindo, Santiago Pulla, 2022. "Analysis and proposal of energy planning and renewable energy plans in South America: Case study of Ecuador," Renewable Energy, Elsevier, vol. 182(C), pages 314-342.
  • Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:314-342
    DOI: 10.1016/j.renene.2021.09.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    3. Arango, Santiago & Larsen, Erik R., 2010. "The environmental paradox in generation: How South America is gradually becoming more dependent on thermal generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2956-2965, December.
    4. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    5. Llerena-Pizarro, Omar R. & Micena, Raul Pereira & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Electricity sector in the Galapagos Islands: Current status, renewable sources, and hybrid power generation system proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 65-75.
    6. Ponce-Jara, M.A. & Castro, M. & Pelaez-Samaniego, M.R. & Espinoza-Abad, J.L. & Ruiz, E., 2018. "Electricity sector in Ecuador: An overview of the 2007–2017 decade," Energy Policy, Elsevier, vol. 113(C), pages 513-522.
    7. Rudnick, Hugh & Raineri, Ricardo, 1997. "Transmission pricing practices in South America," Utilities Policy, Elsevier, vol. 6(3), pages 211-218, September.
    8. Rathore, Pushpendra Kumar Singh & Chauhan, Durg Singh & Singh, Rudra Pratap, 2019. "Decentralized solar rooftop photovoltaic in India: On the path of sustainable energy security," Renewable Energy, Elsevier, vol. 131(C), pages 297-307.
    9. Stacie Buccina & Douglas Chene & Jeffrey Gramlich, 2013. "Accounting for the environmental impacts of Texaco's operations in Ecuador: Chevron's contingent environmental liability disclosures," Accounting Forum, Taylor & Francis Journals, vol. 37(2), pages 110-123, June.
    10. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    11. Blakers, Andrew & Stocks, Matthew & Lu, Bin & Cheng, Cheng, 2021. "The observed cost of high penetration solar and wind electricity," Energy, Elsevier, vol. 233(C).
    12. Pursiheimo, Esa & Holttinen, Hannele & Koljonen, Tiina, 2019. "Inter-sectoral effects of high renewable energy share in global energy system," Renewable Energy, Elsevier, vol. 136(C), pages 1119-1129.
    13. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    14. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Boute, Anatole, 2016. "Off-grid renewable energy in remote Arctic areas: An analysis of the Russian Far East," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1029-1037.
    16. Arango-Aramburo, S. & Ríos-Ocampo, J.P. & Larsen, E.R., 2020. "Examining the decreasing share of renewable energy amid growing thermal capacity: The case of South America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Dominković, D.F. & Bačeković, I. & Ćosić, B. & Krajačić, G. & Pukšec, T. & Duić, N. & Markovska, N., 2016. "Zero carbon energy system of South East Europe in 2050," Applied Energy, Elsevier, vol. 184(C), pages 1517-1528.
    18. Martínez, J. & Martí-Herrero, Jaime & Villacís, S. & Riofrio, A.J. & Vaca, D., 2017. "Analysis of energy, CO2 emissions and economy of the technological migration for clean cooking in Ecuador," Energy Policy, Elsevier, vol. 107(C), pages 182-187.
    19. Boulogiorgou, D. & Ktenidis, P., 2020. "TILOS local scale Technology Innovation enabling low carbon energy transition," Renewable Energy, Elsevier, vol. 146(C), pages 397-403.
    20. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    21. Kakran, Sandeep & Chanana, Saurabh, 2018. "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 524-535.
    22. Flavio R. Arroyo M. & Luis J. Miguel, 2020. "The Role of Renewable Energies for the Sustainable Energy Governance and Environmental Policies for the Mitigation of Climate Change in Ecuador," Energies, MDPI, vol. 13(15), pages 1-18, July.
    23. Eftichios S. Sartzetakis, 2021. "Green bonds as an instrument to finance low carbon transition," Economic Change and Restructuring, Springer, vol. 54(3), pages 755-779, August.
    24. -, 2016. "Horizons 2030: Equality at the centre of sustainable development," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 40160 edited by Eclac.
    25. Vargas Gil, Gloria Milena & Bittencourt Aguiar Cunha, Rafael & Giuseppe Di Santo, Silvio & Machado Monaro, Renato & Fragoso Costa, Fabiano & Sguarezi Filho, Alfeu J., 2020. "Photovoltaic energy in South America: Current state and grid regulation for large-scale and distributed photovoltaic systems," Renewable Energy, Elsevier, vol. 162(C), pages 1307-1320.
    26. Lo, Kevin, 2014. "A critical review of China's rapidly developing renewable energy and energy efficiency policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 508-516.
    27. Sovacool, Benjamin K. & Scarpaci, Joseph, 2016. "Energy justice and the contested petroleum politics of stranded assets: Policy insights from the Yasuní-ITT Initiative in Ecuador," Energy Policy, Elsevier, vol. 95(C), pages 158-171.
    28. Kissel, Johannes M. & Hanitsch, Rolf & Krauter, Stefan C.W., 2009. "Cornerstones of a renewable energy law for emerging markets in South America," Energy Policy, Elsevier, vol. 37(9), pages 3621-3626, September.
    29. Ben Jebli, Mehdi & Ben Youssef, Slim, 2015. "Output, renewable and non-renewable energy consumption and international trade: Evidence from a panel of 69 countries," Renewable Energy, Elsevier, vol. 83(C), pages 799-808.
    30. Adedoyin, Festus Fatai & Bekun, Festus Victor & Alola, Andrew Adewale, 2020. "Growth impact of transition from non-renewable to renewable energy in the EU: The role of research and development expenditure," Renewable Energy, Elsevier, vol. 159(C), pages 1139-1145.
    31. Buccina, Stacie & Chene, Douglas & Gramlich, Jeffrey, 2013. "Accounting for the environmental impacts of Texaco's operations in Ecuador: Chevron's contingent environmental liability disclosures," Accounting forum, Elsevier, vol. 37(2), pages 110-123.
    32. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    33. -, 2016. "Horizons 2030: Equality at the centre of sustainable development. Summary," Documentos de posición del período de sesiones de la Comisión 40117, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    34. Jacobs, David & Marzolf, Natacha & Paredes, Juan Roberto & Rickerson, Wilson & Flynn, Hilary & Becker-Birck, Christina & Solano-Peralta, Mauricio, 2013. "Analysis of renewable energy incentives in the Latin America and Caribbean region: The feed-in tariff case," Energy Policy, Elsevier, vol. 60(C), pages 601-610.
    35. Rubio, M. del Mar & Tafunell, Xavier, 2014. "Latin American hydropower: A century of uneven evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 323-334.
    36. Mensah, Lord & Obi, Pat & Bokpin, Godfred, 2017. "Cointegration test of oil price and us dollar exchange rates for some oil dependent economies," Research in International Business and Finance, Elsevier, vol. 42(C), pages 304-311.
    37. Curran, Louise & Lv, Ping & Spigarelli, Francesca, 2017. "Chinese investment in the EU renewable energy sector: Motives, synergies and policy implications," Energy Policy, Elsevier, vol. 101(C), pages 670-682.
    38. Nadine Unger, 2014. "Human land-use-driven reduction of forest volatiles cools global climate," Nature Climate Change, Nature, vol. 4(10), pages 907-910, October.
    39. Shariatzadeh, Farshid & Mandal, Paras & Srivastava, Anurag K., 2015. "Demand response for sustainable energy systems: A review, application and implementation strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 343-350.
    40. Jami, Anahita A.N. & Walsh, Philip R., 2014. "The role of public participation in identifying stakeholder synergies in wind power project development: The case study of Ontario, Canada," Renewable Energy, Elsevier, vol. 68(C), pages 194-202.
    41. Murshed, Muntasir, 2020. "Are Trade Liberalization policies aligned with Renewable Energy Transition in low and middle income countries? An Instrumental Variable approach," Renewable Energy, Elsevier, vol. 151(C), pages 1110-1123.
    42. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    43. Shaahid, S.M. & El-Amin, I., 2009. "Techno-economic evaluation of off-grid hybrid photovoltaic-diesel-battery power systems for rural electrification in Saudi Arabia--A way forward for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 625-633, April.
    44. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    45. Dato, Prudence & Durmaz, Tunç & Pommeret, Aude, 2020. "Smart grids and renewable electricity generation by households," Energy Economics, Elsevier, vol. 86(C).
    46. Icaza, Daniel & Borge-Diez, David & Galindo, Santiago Pulla, 2021. "Proposal of 100% renewable energy production for the City of Cuenca- Ecuador by 2050," Renewable Energy, Elsevier, vol. 170(C), pages 1324-1341.
    47. Duman, A. Can & Güler, Önder, 2020. "Economic analysis of grid-connected residential rooftop PV systems in Turkey," Renewable Energy, Elsevier, vol. 148(C), pages 697-711.
    48. Watts, David & Oses, Nicolás & Pérez, Rodrigo, 2016. "Assessment of wind energy potential in Chile: A project-based regional wind supply function approach," Renewable Energy, Elsevier, vol. 96(PA), pages 738-755.
    49. Thomas F. Purcell & Nora Fernandez & Estefania Martinez, 2017. "Rents, knowledge and neo-structuralism: transforming the productive matrix in Ecuador," Third World Quarterly, Taylor & Francis Journals, vol. 38(4), pages 918-938, April.
    50. Arango, Santiago & Dyner, Isaac & Larsen, Erik R., 2006. "Lessons from deregulation: Understanding electricity markets in South America," Utilities Policy, Elsevier, vol. 14(3), pages 196-207, September.
    51. Wenz, Klaus-Peter & Serrano-Guerrero, Xavier & Barragán-Escandón, Antonio & González, L.G. & Clairand, Jean-Michel, 2021. "Route prioritization of urban public transportation from conventional to electric buses: A new methodology and a study of case in an intermediate city of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    52. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    53. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    54. Khribich, Abir & Kacem, Rami H. & Dakhlaoui, Ahlem, 2021. "Causality nexus of renewable energy consumption and social development: Evidence from high-income countries," Renewable Energy, Elsevier, vol. 169(C), pages 14-22.
    55. Cevallos-Sierra, Jaime & Ramos-Martin, Jesús, 2018. "Spatial assessment of the potential of renewable energy: The case of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1154-1165.
    56. Javadi, F.S. & Rismanchi, B. & Sarraf, M. & Afshar, O. & Saidur, R. & Ping, H.W. & Rahim, N.A., 2013. "Global policy of rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 402-416.
    57. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Socio-techno-economic design of hybrid renewable energy system using optimization techniques," Renewable Energy, Elsevier, vol. 119(C), pages 459-472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Borge-Diez, 2022. "Energy Policy, Energy Research, and Energy Politics: An Analytical Review of the Current Situation," Energies, MDPI, vol. 15(23), pages 1-13, November.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Muhammad Zain Yousaf & Ali Raza & Ghulam Abbas & Nasim Ullah & Ahmad Aziz Al-Ahmadi & Abdul Rehman Yasin & Mohsin Jamil, 2022. "MTDC Grids: A Metaheuristic Solution for Nonlinear Control," Energies, MDPI, vol. 15(12), pages 1-24, June.
    4. Bryam Paúl Lojano-Riera & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & David Vallejo-Ramírez & Daniel Icaza, 2023. "Electromobility with Photovoltaic Generation in an Andean City," Energies, MDPI, vol. 16(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Icaza-Alvarez, Daniel & Jurado, Francisco & Tostado-Véliz, Marcos & Arevalo, Paúl, 2022. "Decarbonization of the Galapagos Islands. Proposal to transform the energy system into 100% renewable by 2050," Renewable Energy, Elsevier, vol. 189(C), pages 199-220.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    6. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    7. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    8. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    9. Löffler, Konstantin & Burandt, Thorsten & Hainsch, Karlo & Oei, Pao-Yu, 2019. "Modeling the low-carbon transition of the European energy system - A quantitative assessment of the stranded assets problem," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 26, pages 1-15.
    10. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Cristiani, Laura & de Santoli, Livio, 2022. "Rising targets to 55% GHG emissions reduction – The smart energy systems approach for improving the Italian energy strategy," Energy, Elsevier, vol. 259(C).
    11. Bogdanov, Dmitrii & Gulagi, Ashish & Fasihi, Mahdi & Breyer, Christian, 2021. "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination," Applied Energy, Elsevier, vol. 283(C).
    12. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Potrč, Sanja & Nemet, Andreja & Čuček, Lidija & Varbanov, Petar Sabev & Kravanja, Zdravko, 2022. "Synthesis of a regenerative energy system – beyond carbon emissions neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    14. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    15. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    16. Geovanna Villacreses & Diego Jijón & Juan Francisco Nicolalde & Javier Martínez-Gómez & Franz Betancourt, 2022. "Multicriteria Decision Analysis of Suitable Location for Wind and Photovoltaic Power Plants on the Galápagos Islands," Energies, MDPI, vol. 16(1), pages 1-23, December.
    17. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Do, Thang Nam, 2021. "Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage," Energy, Elsevier, vol. 236(C).
    18. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    19. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    20. Gulagi, Ashish & Ram, Manish & Solomon, A.A. & Khan, Musharof & Breyer, Christian, 2020. "Current energy policies and possible transition scenarios adopting renewable energy: A case study for Bangladesh," Renewable Energy, Elsevier, vol. 155(C), pages 899-920.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:314-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.