IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221013980.html
   My bibliography  Save this article

The observed cost of high penetration solar and wind electricity

Author

Listed:
  • Blakers, Andrew
  • Stocks, Matthew
  • Lu, Bin
  • Cheng, Cheng

Abstract

High levels of variable solar and wind must be balanced with alternative generation, storage, transmission and demand management to ensure continuous availability of electricity. The cost of balancing has been disputed, which militates against mass deployment of solar and wind to mitigate climate change. Australia is installing solar and wind 10 times faster than the global per capita average which constitutes a natural experiment in the real cost of balancing. The National Electricity Market (NEM) and the state of South Australia have reached combined solar and wind energy penetrations of 24% and 70% respectively and are tracking towards 40% and 100% respectively in 2024–25. Investment in new balancing infrastructure is predominantly in pumped hydro (without new dams on rivers), batteries and transmission. The current (2021) and market futures (2024) spot price for electricity in the NEM and South Australia is about AUD$40 (∼US$30) per Megawatt-hour. This suggests that the balancing cost of high levels of solar and wind is modest.

Suggested Citation

  • Blakers, Andrew & Stocks, Matthew & Lu, Bin & Cheng, Cheng, 2021. "The observed cost of high penetration solar and wind electricity," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013980
    DOI: 10.1016/j.energy.2021.121150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashish Gulagi & Manish Ram & Dmitrii Bogdanov & Sandeep Sarin & Theophilus Nii Odai Mensah & Christian Breyer, 2022. "The role of renewables for rapid transitioning of the power sector across states in India," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Ouyang, Tiancheng & Zhang, Mingliang & Wu, Wencong & Zhao, Jiaqi & Xu, Hua, 2023. "A day-ahead planning for multi-energy system in building community," Energy, Elsevier, vol. 267(C).
    3. Gilmore, Nicholas & Koskinen, Ilpo & van Gennip, Domenique & Paget, Greta & Burr, Patrick A. & Obbard, Edward G. & Daiyan, Rahman & Sproul, Alistair & Kay, Merlinde & Lennon, Alison & Konstantinou, Ge, 2022. "Clean energy futures: An Australian based foresight study," Energy, Elsevier, vol. 260(C).
    4. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    5. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Rai, Alan & Konstandatos, Otto, 2022. "Large-scale and rooftop solar generation in the NEM: A tale of two renewables strategies," Energy Economics, Elsevier, vol. 115(C).
    6. Ekaterina Bayborodina & Michael Negnevitsky & Evan Franklin & Alison Washusen, 2021. "Grid-Scale Battery Energy Storage Operation in Australian Electricity Spot and Contingency Reserve Markets," Energies, MDPI, vol. 14(23), pages 1-21, December.
    7. Icaza, Daniel & Borge-Diez, David & Galindo, Santiago Pulla, 2022. "Analysis and proposal of energy planning and renewable energy plans in South America: Case study of Ecuador," Renewable Energy, Elsevier, vol. 182(C), pages 314-342.
    8. Burke, Paul J. & Beck, Fiona J. & Aisbett, Emma & Baldwin, Kenneth G.H. & Stocks, Matthew & Pye, John & Venkataraman, Mahesh & Hunt, Janet & Bai, Xuemei, 2022. "Contributing to regional decarbonization: Australia's potential to supply zero-carbon commodities to the Asia-Pacific," Energy, Elsevier, vol. 248(C).
    9. Qin, Peijia & Tan, Xianlin & Huang, Youbin & Pan, Mingming & Ouyang, Tiancheng, 2023. "Two-stage robust optimal scheduling framework applied for microgrids: Combined energy recovery and forecast," Renewable Energy, Elsevier, vol. 214(C), pages 290-306.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.