IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148124022663.html
   My bibliography  Save this article

Deploying renewable energy sources and energy storage systems for achieving low-carbon emissions targets in hydro-dominated power systems: A case study of Ecuador

Author

Listed:
  • Villamarín-Jácome, Alex
  • Saltos-Rodríguez, Miguel
  • Espín-Sarzosa, Danny
  • Haro, Ricardo
  • Villamarín, Geovanny
  • Okoye, Martin Onyeka

Abstract

Low-carbon electricity systems have become a key objective for governments and power sector stakeholders worldwide regarding the energy transition. In this sense, renewable energy sources (RESs) and energy storage systems (ESSs) are important in the transition to low-carbon electricity generation, as they contribute to reducing carbon emissions. However, deploying these technologies faces techno-economic challenges, particularly in hydro-dominated systems like Ecuador. This paper presents a multi-year expansion planning model to simultaneously optimize the RESs and ESSs portfolios to fulfill Ecuador’s low-carbon emission targets. It also comprehensively describes the current status and future scenarios of RESs deployment in Ecuador towards low-carbon development. The model was applied to the Ecuadorian power system (EPS) considering the generation planning process projected from 2023 to 2031 according to the Electricity Master Plan, two conditions of hydropower availability, and three planning scenarios. The results showed that to meet Ecuador’s carbon emission targets, there is a progressive increase in the installation of low-carbon electricity capacity each year, especially RESs and ESSs, reaching investments by 2031 of 908 MW for PV, 605 MW for wind, and 763 for ESSs. Thus, this work highlights the importance of considering both RESs and ESSs for achieving low-carbon emission targets in the EPS.

Suggested Citation

  • Villamarín-Jácome, Alex & Saltos-Rodríguez, Miguel & Espín-Sarzosa, Danny & Haro, Ricardo & Villamarín, Geovanny & Okoye, Martin Onyeka, 2025. "Deploying renewable energy sources and energy storage systems for achieving low-carbon emissions targets in hydro-dominated power systems: A case study of Ecuador," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124022663
    DOI: 10.1016/j.renene.2024.122198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Posso Rivera, Fausto & Zalamea, Javier & Espinoza, Juan L. & Gonzalez, Luis G, 2022. "Sustainable use of spilled turbinable energy in Ecuador: Three different energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Peter, Jakob, 2019. "How does climate change affect electricity system planning and optimal allocation of variable renewable energy?," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Felipe Nazaré & Luiz Barroso & Bernardo Bezerra, 2021. "A Probabilistic and Value-Based Planning Approach to Assess the Competitiveness between Gas-Fired and Renewables in Hydro-Dominated Systems: A Brazilian Case Study," Energies, MDPI, vol. 14(21), pages 1-21, November.
    4. Francisco Munoz & Jean-Paul Watson, 2015. "A scalable solution framework for stochastic transmission and generation planning problems," Computational Management Science, Springer, vol. 12(4), pages 491-518, October.
    5. Sinsel, Simon R. & Riemke, Rhea L. & Hoffmann, Volker H., 2020. "Challenges and solution technologies for the integration of variable renewable energy sources—a review," Renewable Energy, Elsevier, vol. 145(C), pages 2271-2285.
    6. Inzunza, Andrés & Moreno, Rodrigo & Bernales, Alejandro & Rudnick, Hugh, 2016. "CVaR constrained planning of renewable generation with consideration of system inertial response, reserve services and demand participation," Energy Economics, Elsevier, vol. 59(C), pages 104-117.
    7. Julio Barzola-Monteses & Mónica Mite-León & Mayken Espinoza-Andaluz & Juan Gómez-Romero & Waldo Fajardo, 2019. "Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    8. Ponce-Jara, M.A. & Castro, M. & Pelaez-Samaniego, M.R. & Espinoza-Abad, J.L. & Ruiz, E., 2018. "Electricity sector in Ecuador: An overview of the 2007–2017 decade," Energy Policy, Elsevier, vol. 113(C), pages 513-522.
    9. Pablo E. Carvajal & Francis G. N. Li, 2019. "Challenges for hydropower-based nationally determined contributions: a case study for Ecuador," Climate Policy, Taylor & Francis Journals, vol. 19(8), pages 974-987, September.
    10. Dranka, Géremi Gilson & Ferreira, Paula, 2018. "Planning for a renewable future in the Brazilian power system," Energy, Elsevier, vol. 164(C), pages 496-511.
    11. Icaza, Daniel & Borge-Diez, David & Galindo, Santiago Pulla, 2022. "Analysis and proposal of energy planning and renewable energy plans in South America: Case study of Ecuador," Renewable Energy, Elsevier, vol. 182(C), pages 314-342.
    12. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Zhang, Hongyu & Deji, Wangzhen & Farinotti, Daniel & Zhang, Da & Huang, Junling, 2024. "The role of Xizang in China's transition towards a carbon-neutral power system," Energy, Elsevier, vol. 313(C).
    4. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Barreto-Cuesta, Anahí & Zakaria, As'ad & Herrera-Perez, Victor & Djokic, Sasa Z., 2024. "Transition to a 100 % renewable power supply in galapagos islands: Long-term and short-term analysis for optimal operation and sizing of grid upgrades," Renewable Energy, Elsevier, vol. 234(C).
    7. Bergen, Matías & Muñoz, Francisco D., 2018. "Quantifying the effects of uncertain climate and environmental policies on investments and carbon emissions: A case study of Chile," Energy Economics, Elsevier, vol. 75(C), pages 261-273.
    8. Figueiredo, Raquel & Nunes, Pedro & Brito, Miguel C., 2021. "The resilience of a decarbonized power system to climate variability: Portuguese case study," Energy, Elsevier, vol. 224(C).
    9. Sebastian Naranjo-Silva & Diego Punina-Guerrero & Luis Rivera-Gonzalez & Kenny Escobar-Segovia & Jose David Barros-Enriquez & Jorge Armando Almeida-Dominguez & Javier Alvarez del Castillo, 2023. "Hydropower Scenarios in the Face of Climate Change in Ecuador," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    10. Zapata, Sebastian & Castaneda, Monica & Aristizabal, Andres J. & Dyner, Isaac, 2022. "Renewables for supporting supply adequacy in Colombia," Energy, Elsevier, vol. 239(PC).
    11. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    12. Wang, Mingtao & Zhang, Juan & Liu, Huanwei, 2022. "Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems," Energy, Elsevier, vol. 249(C).
    13. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    14. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    15. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    16. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    17. Julien Walzberg & Annika Eberle, 2023. "Modeling Systems’ Disruption and Social Acceptance—A Proof-of-Concept Leveraging Reinforcement Learning," Sustainability, MDPI, vol. 15(13), pages 1-13, June.
    18. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    19. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    20. Reguieg, Zakaria & Bouyakoub, Ismail & Mehedi, Fayçal, 2025. "Integrated optimization of power quality and energy management in a photovoltaic-battery microgrid," Renewable Energy, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124022663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.