IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148125000205.html
   My bibliography  Save this article

Integrated optimization of power quality and energy management in a photovoltaic-battery microgrid

Author

Listed:
  • Reguieg, Zakaria
  • Bouyakoub, Ismail
  • Mehedi, Fayçal

Abstract

Due to the intermittent nature of weather conditions, the integration of power electronics for renewable energy sources (RES), like photovoltaic (PV) systems, and the variability in power demand, effective energy management strategies are essential. Battery Energy Storage (BES) helps maintain stability and balance within the microgrid (MG) under changing conditions. A PV-Series Active Power Filter (APF) improves power quality (PQ) by addressing these challenges. This study presents a comprehensive approach within a PV-battery MG system. The Enhanced Perturb and Observe (EP&O) Maximum Power Point Tracking (MPPT), algorithm shows superior stability, robustness, and accuracy in tracking the Maximum Power Point (MPP) compared to the incremental conductance (INC) and basic P&O methods. Additionally, the proposed Energy Management System (EMS) optimizes power distribution between PV, BES, and the grid, ensuring efficient load demand management. The PV-Series APF effectively mitigates PQ issues such as unbalanced, sags, swells voltages, and harmonics. It reduces Total Harmonic Distortion (THD) to between 0.67 % and 0.7 %. Simulation results confirm the effectiveness of these integrated solutions in enhancing EMS and PQ within the MG.

Suggested Citation

  • Reguieg, Zakaria & Bouyakoub, Ismail & Mehedi, Fayçal, 2025. "Integrated optimization of power quality and energy management in a photovoltaic-battery microgrid," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148125000205
    DOI: 10.1016/j.renene.2025.122358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125000205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nhlanhla Mbuli, 2023. "Dynamic Voltage Restorer as a Solution to Voltage Problems in Power Systems: Focus on Sags, Swells and Steady Fluctuations," Energies, MDPI, vol. 16(19), pages 1-26, October.
    2. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    3. Sinsel, Simon R. & Riemke, Rhea L. & Hoffmann, Volker H., 2020. "Challenges and solution technologies for the integration of variable renewable energy sources—a review," Renewable Energy, Elsevier, vol. 145(C), pages 2271-2285.
    4. Selimefendigil, Fatih & Bayrak, Fatih & Oztop, Hakan F., 2018. "Experimental analysis and dynamic modeling of a photovoltaic module with porous fins," Renewable Energy, Elsevier, vol. 125(C), pages 193-205.
    5. Subarto Kumar Ghosh & Tushar Kanti Roy & Md Abu Hanif Pramanik & Ajay Krishno Sarkar & Md. Apel Mahmud, 2020. "An Energy Management System-Based Control Strategy for DC Microgrids with Dual Energy Storage Systems," Energies, MDPI, vol. 13(11), pages 1-16, June.
    6. Bendib, Boualem & Belmili, Hocine & Krim, Fateh, 2015. "A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 637-648.
    7. Shakti Singh & Prachi Chauhan & Mohd Asim Aftab & Ikbal Ali & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "Cost Optimization of a Stand-Alone Hybrid Energy System with Fuel Cell and PV," Energies, MDPI, vol. 13(5), pages 1-23, March.
    8. Manzoore Elahi M Soudagar & S Ramesh & T M Yunus Khan & Naif Almakayeel & R Ramesh & Nik Nazri Nik Ghazali & Erdem Cuce & Sagar Shelare, 2024. "An overview of the existing and future state of the art advancement of hybrid energy systems based on PV-solar and wind," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 19, pages 207-216.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zapata, Sebastian & Castaneda, Monica & Aristizabal, Andres J. & Dyner, Isaac, 2022. "Renewables for supporting supply adequacy in Colombia," Energy, Elsevier, vol. 239(PC).
    2. Chih-Ta Tsai & Teketay Mulu Beza & Wei-Bin Wu & Cheng-Chien Kuo, 2019. "Optimal Configuration with Capacity Analysis of a Hybrid Renewable Energy and Storage System for an Island Application," Energies, MDPI, vol. 13(1), pages 1-28, December.
    3. Wang, Mingtao & Zhang, Juan & Liu, Huanwei, 2022. "Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems," Energy, Elsevier, vol. 249(C).
    4. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    5. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    6. Sanjeevikumar Padmanaban & Mahajan Sagar Bhaskar & Pandav Kiran Maroti & Frede Blaabjerg & Viliam Fedák, 2018. "An Original Transformer and Switched-Capacitor (T & SC)-Based Extension for DC-DC Boost Converter for High-Voltage/Low-Current Renewable Energy Applications: Hardware Implementation of a New T & SC Bo," Energies, MDPI, vol. 11(4), pages 1-23, March.
    7. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    8. Julien Walzberg & Annika Eberle, 2023. "Modeling Systems’ Disruption and Social Acceptance—A Proof-of-Concept Leveraging Reinforcement Learning," Sustainability, MDPI, vol. 15(13), pages 1-13, June.
    9. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    10. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    11. Yinhe Bu & Xingping Zhang, 2021. "On the Way to Integrate Increasing Shares of Variable Renewables in China: Experience from Flexibility Modification and Deep Peak Regulation Ancillary Service Market Based on MILP-UC Programming," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    12. Al-Amri, Fahad & Saeed, Farooq & Mujeebu, Muhammad Abdul, 2022. "Novel dual-function racking structure for passive cooling of solar PV panels –thermal performance analysis," Renewable Energy, Elsevier, vol. 198(C), pages 100-113.
    13. Manish Kumar Singla & Jyoti Gupta & Mohammed H. Alsharif & Abu Jahid, 2023. "Optimizing Integration of Fuel Cell Technology in Renewable Energy-Based Microgrids for Sustainable and Cost-Effective Energy," Energies, MDPI, vol. 16(11), pages 1-18, June.
    14. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    15. Ruhnau, Oliver & Hennig, Patrick & Madlener, Reinhard, 2020. "Economic implications of forecasting electricity generation from variable renewable energy sources," Renewable Energy, Elsevier, vol. 161(C), pages 1318-1327.
    16. Abbes Kihal & Fateh Krim & Billel Talbi & Abdelbaset Laib & Abdeslem Sahli, 2018. "A Robust Control of Two-Stage Grid-Tied PV Systems Employing Integral Sliding Mode Theory," Energies, MDPI, vol. 11(10), pages 1-21, October.
    17. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin, 2022. "The role of modified diesel generation within isolated power systems," Energy, Elsevier, vol. 240(C).
    18. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    19. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    20. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148125000205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.