IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224036685.html
   My bibliography  Save this article

The role of Xizang in China's transition towards a carbon-neutral power system

Author

Listed:
  • Zhang, Hongyu
  • Deji, Wangzhen
  • Farinotti, Daniel
  • Zhang, Da
  • Huang, Junling

Abstract

Developing renewable energy is crucial for achieving China's carbon neutrality target by 2060. Xizang has a large renewable energy potential, especially hydropower potential, and it could become an important source of clean energy. Meanwhile, climate change has been affecting and will significantly alter hydropower resources in Xizang. This study estimates the development of Xizang's power system and its role in the national power supply under China's carbon neutrality target. In particular, it considers the changes in theoretically available hydropower potential from glacial retreat and transmission-supporting policies. The results show that considering the hydropower potential changes from glacier retreat under climate change, an additional 5.7–6.8 GW of hydropower capacity could be developed in Xizang by 2060, concentrated in Linzhi and Naqu areas. This additional hydropower capacity could increase to 15.9–17.7 GW if transmission subsidies are provided. Under such a scenario, Xizang could export renewable electricity to other provinces for up to about 3 % of the national electricity demand by 2060. The results indicate the importance of considering the impacts of climate change in power system planning and implementing transmission-supporting policies, which could facilitate Xizang to become a renewable energy base for China.

Suggested Citation

  • Zhang, Hongyu & Deji, Wangzhen & Farinotti, Daniel & Zhang, Da & Huang, Junling, 2024. "The role of Xizang in China's transition towards a carbon-neutral power system," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036685
    DOI: 10.1016/j.energy.2024.133890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224036685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Queiroz, Anderson Rodrigo & Marangon Lima, Luana M. & Marangon Lima, José W. & da Silva, Benedito C. & Scianni, Luciana A., 2016. "Climate change impacts in the energy supply of the Brazilian hydro-dominant power system," Renewable Energy, Elsevier, vol. 99(C), pages 379-389.
    2. Peter, Jakob, 2019. "How does climate change affect electricity system planning and optimal allocation of variable renewable energy?," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Zhang, Hongyu & Zhang, Da & Zhang, Xiliang, 2023. "The role of output-based emission trading system in the decarbonization of China's power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Matthias Huss & Regine Hock, 2018. "Global-scale hydrological response to future glacier mass loss," Nature Climate Change, Nature, vol. 8(2), pages 135-140, February.
    5. Chen, Siyuan & Liu, Pei & Li, Zheng, 2019. "Multi-regional power generation expansion planning with air pollutants emission constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 382-394.
    6. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2016. "Inter-regional power grid planning up to 2030 in China considering renewable energy development and regional pollutant control: A multi-region bottom-up optimization model," Applied Energy, Elsevier, vol. 184(C), pages 641-658.
    7. Tarroja, Brian & Forrest, Kate & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott, 2019. "Implications of hydropower variability from climate change for a future, highly-renewable electric grid in California," Applied Energy, Elsevier, vol. 237(C), pages 353-366.
    8. Chenfei Qu & Xi Yang & Da Zhang & Xiliang Zhang, 2020. "Estimating Health Co-Benefits Of Climate Policies In China: An Application Of The Regional Emissions-Air Quality-Climate-Health (Reach) Framework," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 1-33, August.
    9. Chen, Siyuan & Liu, Pei & Li, Zheng, 2020. "Low carbon transition pathway of power sector with high penetration of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    10. Zhang, Hongyu & Zhang, Da & Guo, Siyue & Zhang, Xiliang, 2024. "Impact of benchmark tightening design under output-based ETS on China's power sector," Energy, Elsevier, vol. 288(C).
    11. Guo, Zheng & Ma, Linwei & Liu, Pei & Jones, Ian & Li, Zheng, 2016. "A multi-regional modelling and optimization approach to China's power generation and transmission planning," Energy, Elsevier, vol. 116(P2), pages 1348-1359.
    12. Zhong, Ruida & Zhao, Tongtiegang & He, Yanhu & Chen, Xiaohong, 2019. "Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong," Energy, Elsevier, vol. 179(C), pages 685-696.
    13. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2019. "Coordination of policy goals between renewable portfolio standards and carbon caps: A quantitative assessment in China," Applied Energy, Elsevier, vol. 237(C), pages 25-35.
    14. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    15. Daniel Farinotti & Vanessa Round & Matthias Huss & Loris Compagno & Harry Zekollari, 2019. "Large hydropower and water-storage potential in future glacier-free basins," Nature, Nature, vol. 575(7782), pages 341-344, November.
    16. Boehlert, Brent & Strzepek, Kenneth M. & Gebretsadik, Yohannes & Swanson, Richard & McCluskey, Alyssa & Neumann, James E. & McFarland, James & Martinich, Jeremy, 2016. "Climate change impacts and greenhouse gas mitigation effects on U.S. hydropower generation," Applied Energy, Elsevier, vol. 183(C), pages 1511-1519.
    17. Zhenyu Zhuo & Ershun Du & Ning Zhang & Chris P. Nielsen & Xi Lu & Jinyu Xiao & Jiawei Wu & Chongqing Kang, 2022. "Cost increase in the electricity supply to achieve carbon neutrality in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    19. Li, Bo & Ma, Ziming & Hidalgo-Gonzalez, Patricia & Lathem, Alex & Fedorova, Natalie & He, Gang & Zhong, Haiwang & Chen, Minyou & Kammen, Daniel M., 2021. "Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors," Energy Policy, Elsevier, vol. 149(C).
    20. Schlott, Markus & Kies, Alexander & Brown, Tom & Schramm, Stefan & Greiner, Martin, 2018. "The impact of climate change on a cost-optimal highly renewable European electricity network," Applied Energy, Elsevier, vol. 230(C), pages 1645-1659.
    21. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    22. Tarroja, Brian & AghaKouchak, Amir & Samuelsen, Scott, 2016. "Quantifying climate change impacts on hydropower generation and implications on electric grid greenhouse gas emissions and operation," Energy, Elsevier, vol. 111(C), pages 295-305.
    23. Chen, Qixin & Kang, Chongqing & Ming, Hao & Wang, Zeyu & Xia, Qing & Xu, Guoxin, 2014. "Assessing the low-carbon effects of inter-regional energy delivery in China's electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 671-683.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    2. Cohen, Stuart M. & Dyreson, Ana & Turner, Sean & Tidwell, Vince & Voisin, Nathalie & Miara, Ariel, 2022. "A multi-model framework for assessing long- and short-term climate influences on the electric grid," Applied Energy, Elsevier, vol. 317(C).
    3. Zhong, Ruida & Zhao, Tongtiegang & He, Yanhu & Chen, Xiaohong, 2019. "Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong," Energy, Elsevier, vol. 179(C), pages 685-696.
    4. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    5. Jonas Savelsberg & Moritz Schillinger & Ingmar Schlecht & Hannes Weigt, 2018. "The Impact of Climate Change on Swiss Hydropower," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
    6. Zhong, Ruida & Zhao, Tongtiegang & Chen, Xiaohong, 2021. "Evaluating the tradeoff between hydropower benefit and ecological interest under climate change: How will the water-energy-ecosystem nexus evolve in the upper Mekong basin?," Energy, Elsevier, vol. 237(C).
    7. Xu, Jin-Hua & Yi, Bo-Wen & Fan, Ying, 2020. "Economic viability and regulation effects of infrastructure investments for inter-regional electricity transmission and trade in China," Energy Economics, Elsevier, vol. 91(C).
    8. Figueiredo, Raquel & Nunes, Pedro & Brito, Miguel C., 2021. "The resilience of a decarbonized power system to climate variability: Portuguese case study," Energy, Elsevier, vol. 224(C).
    9. Chen, Hao & Liu, Simin & Liu, Qiufeng & Shi, Xueli & Wei, Wendong & Han, Rong & Küfeoğlu, Sinan, 2021. "Estimating the impacts of climate change on electricity supply infrastructure: A case study of China," Energy Policy, Elsevier, vol. 150(C).
    10. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    12. Zhang, Hongyu & Zhang, Da & Guo, Siyue & Zhang, Xiliang, 2024. "Impact of benchmark tightening design under output-based ETS on China's power sector," Energy, Elsevier, vol. 288(C).
    13. Yang, Zhikai & Liu, Pan & Cheng, Lei & Liu, Deli & Ming, Bo & Li, He & Xia, Qian, 2021. "Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China," Energy, Elsevier, vol. 236(C).
    14. Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
    15. Zhang, Yaru & Ma, Tieju & Guo, Fei, 2018. "A multi-regional energy transport and structure model for China’s electricity system," Energy, Elsevier, vol. 161(C), pages 907-919.
    16. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    17. Patro, Epari Ritesh & De Michele, Carlo & Avanzi, Francesco, 2018. "Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage: The case of Italian Alps," Applied Energy, Elsevier, vol. 231(C), pages 699-713.
    18. Hu, Yu & Li, Jialin & Chi, Yuanying & Zheng, Yi, 2024. "Optimization of regional power low-carbon transition pathways in China under differentiated tradable green certificates trading models," Renewable Energy, Elsevier, vol. 237(PC).
    19. Chen, Siyuan & Liu, Pei & Li, Zheng, 2019. "Multi-regional power generation expansion planning with air pollutants emission constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 382-394.
    20. Hailin Mu & Zhewen Pei & Hongye Wang & Nan Li & Ye Duan, 2022. "Optimal Strategy for Low-Carbon Development of Power Industry in Northeast China Considering the ‘Dual Carbon’ Goal," Energies, MDPI, vol. 15(17), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.