IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp379-389.html
   My bibliography  Save this article

Climate change impacts in the energy supply of the Brazilian hydro-dominant power system

Author

Listed:
  • de Queiroz, Anderson Rodrigo
  • Marangon Lima, Luana M.
  • Marangon Lima, José W.
  • da Silva, Benedito C.
  • Scianni, Luciana A.

Abstract

Over the past few years, there has been a growing global consensus related to the importance of renewable energy to minimize the emission of greenhouse gases. The solution is an increase in the number of renewable power plants but unfortunately, this leads to a high dependence on climate variables which are already affected by climate change. Brazil is one of the largest producers of electricity by renewables through its hydro-dominant power generation system. However, hydro-generation depends on water inflows that are directly affected by climate change that consequently affect the electricity production. Therefore, these changes need to be considered in the operation and planning of a hydro-dominant power system. In this paper, we present the effects of different climate scenarios in the water inflows produced by the regional Eta climate model. Normally, studies use an optimization model to make decisions in case of a hydro-thermal scheduling problem and use the assured energy to evaluate the hydro-production. In this analysis, water inflows used in the optimization process consider different trends according to its associated climate scenario. Our paper shows that climate change may drastically impact the system assured energy and consequently, the system's capability to supply load.

Suggested Citation

  • de Queiroz, Anderson Rodrigo & Marangon Lima, Luana M. & Marangon Lima, José W. & da Silva, Benedito C. & Scianni, Luciana A., 2016. "Climate change impacts in the energy supply of the Brazilian hydro-dominant power system," Renewable Energy, Elsevier, vol. 99(C), pages 379-389.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:379-389
    DOI: 10.1016/j.renene.2016.07.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116306188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.07.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiu, Chien-Liang & Chang, Ting-Huan, 2009. "What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1669-1674, August.
    2. Pašičko, Robert & Branković, Čedo & Šimić, Zdenko, 2012. "Assessment of climate change impacts on energy generation from renewable sources in Croatia," Renewable Energy, Elsevier, vol. 46(C), pages 224-231.
    3. Yuksel, Ibrahim, 2012. "Global warming and environmental benefits of hydroelectric for sustainable energy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3816-3825.
    4. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    5. Z. L. Chen & W. B. Powell, 1999. "Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 497-524, September.
    6. Jain, P.C., 1993. "Greenhouse effect and climate change: scientific basis and overview," Renewable Energy, Elsevier, vol. 3(4), pages 403-420.
    7. Carvalho, André Luiz de & Menezes, Rômulo Simões Cezar & Nóbrega, Ranyére Silva & Pinto, Alexandre de Siqueira & Ometto, Jean Pierre Henry Balbaud & von Randow, Celso & Giarolla, Angélica, 2015. "Impact of climate changes on potential sugarcane yield in Pernambuco, northeastern region of Brazil," Renewable Energy, Elsevier, vol. 78(C), pages 26-34.
    8. Pereira, Enio B. & Martins, Fernando R. & Pes, Marcelo P. & da Cruz Segundo, Eliude I. & Lyra, André de A., 2013. "The impacts of global climate changes on the wind power density in Brazil," Renewable Energy, Elsevier, vol. 49(C), pages 107-110.
    9. Pereira de Lucena, André Frossard & Szklo, Alexandre Salem & Schaeffer, Roberto & Dutra, Ricardo Marques, 2010. "The vulnerability of wind power to climate change in Brazil," Renewable Energy, Elsevier, vol. 35(5), pages 904-912.
    10. Lau, Lee Chung & Lee, Keat Teong & Mohamed, Abdul Rahman, 2012. "Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord—A comment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5280-5284.
    11. Abdullah, M.A. & Agalgaonkar, A.P. & Muttaqi, K.M., 2014. "Climate change mitigation with integration of renewable energy resources in the electricity grid of New South Wales, Australia," Renewable Energy, Elsevier, vol. 66(C), pages 305-313.
    12. de Lucena, André Frossard Pereira & Szklo, Alexandre Salem & Schaeffer, Roberto & de Souza, Raquel Rodrigues & Borba, Bruno Soares Moreira Cesar & da Costa, Isabella Vaz Leal & Júnior, Amaro Olimpio P, 2009. "The vulnerability of renewable energy to climate change in Brazil," Energy Policy, Elsevier, vol. 37(3), pages 879-889, March.
    13. Corrêa da Silva, Rodrigo & de Marchi Neto, Ismael & Silva Seifert, Stephan, 2016. "Electricity supply security and the future role of renewable energy sources in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 328-341.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faria, Victor. A.D. & de Queiroz, Anderson Rodrigo & Lima, Luana M.M. & Lima, José W.M., 2018. "Cooperative game theory and last addition method in the allocation of firm energy rights," Applied Energy, Elsevier, vol. 226(C), pages 905-915.
    2. Spittler, Nathalie & Davidsdottir, Brynhildur & Shafiei, Ehsan & Diemer, Arnaud, 2021. "Implications of renewable resource dynamics for energy system planning: The case of geothermal and hydropower in Kenya," Energy Policy, Elsevier, vol. 150(C).
    3. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    4. de Jong, Pieter & Barreto, Tarssio B. & Tanajura, Clemente A.S. & Oliveira-Esquerre, Karla P. & Kiperstok, Asher & Andrade Torres, Ednildo, 2021. "The Impact of Regional Climate Change on Hydroelectric Resources in South America," Renewable Energy, Elsevier, vol. 173(C), pages 76-91.
    5. Suomalainen, Kiti & Wen, Le & Sheng, Mingyue Selena & Sharp, Basil, 2022. "Climate change impact on the cost of decarbonisation in a hydro-based power system," Energy, Elsevier, vol. 246(C).
    6. Chilkoti, Vinod & Bolisetti, Tirupati & Balachandar, Ram, 2017. "Climate change impact assessment on hydropower generation using multi-model climate ensemble," Renewable Energy, Elsevier, vol. 109(C), pages 510-517.
    7. Esteban Gil & Yerel Morales & Tomás Ochoa, 2021. "Addressing the Effects of Climate Change on Modeling Future Hydroelectric Energy Production in Chile," Energies, MDPI, vol. 14(1), pages 1-23, January.
    8. Pablo Borges de Amorim & Pedro B. Chaffe, 2019. "Towards a comprehensive characterization of evidence in synthesis assessments: the climate change impacts on the Brazilian water resources," Climatic Change, Springer, vol. 155(1), pages 37-57, July.
    9. de Queiroz, Anderson Rodrigo & Faria, Victor A.D. & Lima, Luana M.M. & Lima, José W.M., 2019. "Hydropower revenues under the threat of climate change in Brazil," Renewable Energy, Elsevier, vol. 133(C), pages 873-882.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    2. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    3. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    4. Ruffato-Ferreira, Vera & da Costa Barreto, Renata & Oscar Júnior, Antonio & Silva, Wanderson Luiz & de Berrêdo Viana, Daniel & do Nascimento, José Antonio Sena & de Freitas, Marcos Aurélio Vasconcelos, 2017. "A foundation for the strategic long-term planning of the renewable energy sector in Brazil: Hydroelectricity and wind energy in the face of climate change scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1124-1137.
    5. Lucena, André F.P. & Hejazi, Mohamad & Vasquez-Arroyo, Eveline & Turner, Sean & Köberle, Alexandre C. & Daenzer, Kathryn & Rochedo, Pedro R.R. & Kober, Tom & Cai, Yongxia & Beach, Robert H. & Gernaat,, 2018. "Interactions between climate change mitigation and adaptation: The case of hydropower in Brazil," Energy, Elsevier, vol. 164(C), pages 1161-1177.
    6. Kamia Handayani & Tatiana Filatova & Yoram Krozer, 2019. "The Vulnerability of the Power Sector to Climate Variability and Change: Evidence from Indonesia," Energies, MDPI, vol. 12(19), pages 1-25, September.
    7. Suomalainen, Kiti & Wen, Le & Sheng, Mingyue Selena & Sharp, Basil, 2022. "Climate change impact on the cost of decarbonisation in a hydro-based power system," Energy, Elsevier, vol. 246(C).
    8. de Jong, Pieter & Dargaville, Roger & Silver, Jeremy & Utembe, Steven & Kiperstok, Asher & Torres, Ednildo Andrade, 2017. "Forecasting high proportions of wind energy supplying the Brazilian Northeast electricity grid," Applied Energy, Elsevier, vol. 195(C), pages 538-555.
    9. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    10. Xiaowen Ding & Lin Liu & Guohe Huang & Ye Xu & Junhong Guo, 2019. "A Multi-Objective Optimization Model for a Non-Traditional Energy System in Beijing under Climate Change Conditions," Energies, MDPI, vol. 12(9), pages 1-21, May.
    11. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2020. "Benefits from energy policy synchronisation of Brazil’s North-Northeast interconnection," Renewable Energy, Elsevier, vol. 162(C), pages 427-437.
    12. Shadman, F. & Sadeghipour, S. & Moghavvemi, M. & Saidur, R., 2016. "Drought and energy security in key ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 50-58.
    13. Santos, Maria João & Ferreira, Paula & Araújo, Madalena, 2016. "A methodology to incorporate risk and uncertainty in electricity power planning," Energy, Elsevier, vol. 115(P2), pages 1400-1411.
    14. Jing-Li Fan & Bao-Jun Tang & Hao Yu & Yun-Bing Hou & Yi-Ming Wei, 2015. "Impact of climatic factors on monthly electricity consumption of China’s sectors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 2027-2037, January.
    15. Juárez, Alberto Aquino & Araújo, Alex Maurício & Rohatgi, Janardan Singh & de Oliveira Filho, Oyama Douglas Queiroz, 2014. "Development of the wind power in Brazil: Political, social and technical issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 828-834.
    16. Dranka, Géremi Gilson & Ferreira, Paula, 2018. "Planning for a renewable future in the Brazilian power system," Energy, Elsevier, vol. 164(C), pages 496-511.
    17. Schmidt, Johannes & Cancella, Rafael & Junior, Amaro Olímpio Pereira, 2016. "The effect of windpower on long-term variability of combined hydro-wind resources: The case of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 131-141.
    18. de Jong, Pieter & Barreto, Tarssio B. & Tanajura, Clemente A.S. & Kouloukoui, Daniel & Oliveira-Esquerre, Karla P. & Kiperstok, Asher & Torres, Ednildo Andrade, 2019. "Estimating the impact of climate change on wind and solar energy in Brazil using a South American regional climate model," Renewable Energy, Elsevier, vol. 141(C), pages 390-401.
    19. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    20. Cergibozan, Raif, 2022. "Renewable energy sources as a solution for energy security risk: Empirical evidence from OECD countries," Renewable Energy, Elsevier, vol. 183(C), pages 617-626.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:379-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.