IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v168y2015icp71-80.html
   My bibliography  Save this article

Economic impact of production bottlenecks caused by disasters impacting interdependent industry sectors

Author

Listed:
  • Baghersad, Milad
  • Zobel, Christopher W.

Abstract

This paper provides a new linear programming model, based on Leontief׳s input–output model, to investigate the economic consequences of production capacity bottlenecks caused by disasters. An important contribution of the paper is the incorporation of industry sectors׳ preferences in allocating limited products/services between final domestic demand, foreign final demand, and intermediate industries. This provides support for estimating some of the indirect economic impacts of disasters. The paper also considers recovery operations within disrupted sectors, from the standpoint of evaluating the performance of the economy during the transition period after a disaster. The models are implemented to investigate the economic consequences of electricity sector disruption in Singapore and, finally, computational results are reported.

Suggested Citation

  • Baghersad, Milad & Zobel, Christopher W., 2015. "Economic impact of production bottlenecks caused by disasters impacting interdependent industry sectors," International Journal of Production Economics, Elsevier, vol. 168(C), pages 71-80.
  • Handle: RePEc:eee:proeco:v:168:y:2015:i:c:p:71-80
    DOI: 10.1016/j.ijpe.2015.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527315002194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2015.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Setola, Roberto & De Porcellinis, Stefano & Sforna, Marino, 2009. "Critical infrastructure dependency assessment using the input–output inoperability model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(4), pages 170-178.
    2. Adam Rose & Gauri-Shankar Guha, 2004. "Computable General Equilibrium Modeling of Electric Utility Lifeline Losses from Earthquakes," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 7, pages 119-141, Springer.
    3. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    4. Albino, Vito & Izzo, Carmen & Kuhtz, Silvana, 2002. "Input-output models for the analysis of a local/global supply chain," International Journal of Production Economics, Elsevier, vol. 78(2), pages 119-131, July.
    5. Chang, Young-Tae & Shin, Sung-Ho & Lee, Paul Tae-Woo, 2014. "Economic impact of port sectors on South African economy: An input–output analysis," Transport Policy, Elsevier, vol. 35(C), pages 333-340.
    6. Dobos, Imre & Floriska, Adel, 2007. "The resource conservation effect of recycling in a dynamic Leontief model," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 334-340, July.
    7. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    8. Pant, Raghav & Barker, Kash & Zobel, Christopher W., 2014. "Static and dynamic metrics of economic resilience for interdependent infrastructure and industry sectors," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 92-102.
    9. F Giarratani, 1976. "Application of an Interindustry Supply Model to Energy Issues," Environment and Planning A, , vol. 8(4), pages 447-454, June.
    10. Stéphane Hallegatte, 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," Post-Print hal-00716550, HAL.
    11. Yasuhide Okuyama & Joost R. Santos, 2014. "Disaster Impact And Input--Output Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 1-12, March.
    12. Saaty, Thomas L., 2003. "Decision-making with the AHP: Why is the principal eigenvector necessary," European Journal of Operational Research, Elsevier, vol. 145(1), pages 85-91, February.
    13. Pant, Raghav & Barker, Kash & Grant, F. Hank & Landers, Thomas L., 2011. "Interdependent impacts of inoperability at multi-modal transportation container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 722-737, September.
    14. Crowther, Kenneth G., 2008. "Decentralized risk management for strategic preparedness of critical infrastructure through decomposition of the inoperability input–output model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 1(C), pages 53-67.
    15. Bonney, Maurice & Jaber, Mohamad Y., 2013. "Developing an input–output activity matrix (IOAM) for environmental and economic analysis of manufacturing systems and logistics chains," International Journal of Production Economics, Elsevier, vol. 143(2), pages 589-597.
    16. -, 2003. "Handbook for estimating the socio-economic and environmental effects of disasters," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 2782 edited by Eclac.
    17. Adam Rose, 2004. "Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 2, pages 13-36, Springer.
    18. Barker, Kash & Santos, Joost R., 2010. "Measuring the efficacy of inventory with a dynamic input-output model," International Journal of Production Economics, Elsevier, vol. 126(1), pages 130-143, July.
    19. James, D. E. & deL. Musgrove, A. R. & Stocks, K. J., 1986. "Integration of an economic input-output model and a linear programming technological model for energy systems analysis," Energy Economics, Elsevier, vol. 8(2), pages 99-112, April.
    20. Yasuhide Okuyama, 2007. "Economic Modeling for Disaster Impact Analysis: Past, Present, and Future," Economic Systems Research, Taylor & Francis Journals, vol. 19(2), pages 115-124.
    21. Adam Rose & Dan Wei, 2013. "Estimating The Economic Consequences Of A Port Shutdown: The Special Role Of Resilience," Economic Systems Research, Taylor & Francis Journals, vol. 25(2), pages 212-232, June.
    22. Zhang, Yan & Xia, Guoping, 2010. "Short-run cost-based pricing model for a supply chain network," International Journal of Production Economics, Elsevier, vol. 128(1), pages 167-174, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krista Danielle S. Yu & Kathleen B. Aviso & Joost R. Santos & Raymond R. Tan, 2020. "The Economic Impact of Lockdowns: A Persistent Inoperability Input-Output Approach," Economies, MDPI, vol. 8(4), pages 1-14, December.
    2. Pérez-Blanco, C. D & Standardi, G., 2019. "Farm waters run deep: a coupled positive multi-attribute utility programming and computable general equilibrium model to assess the economy-wide impacts of water buyback," Agricultural Water Management, Elsevier, vol. 213(C), pages 336-351.
    3. C. D. Pérez-Blanco & E. E. Koks & E. Calliari & J. Mysiak, 2018. "Economic Impacts of Irrigation-Constrained Agriculture in the Lower Po Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-38, January.
    4. Raquel Sanchis & Raúl Poler, 2019. "Enterprise Resilience Assessment—A Quantitative Approach," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    5. Perez Blanco, C.D., 2018. "Waters run deep: A coupled Revealed Preference and CGE model to assess the economy-wide impacts of agricultural water buyback," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277028, International Association of Agricultural Economists.
    6. Alikhani, Reza & Torabi, S.Ali & Altay, Nezih, 2021. "Retail supply chain network design with concurrent resilience capabilities," International Journal of Production Economics, Elsevier, vol. 234(C).
    7. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2017. "Energy-economic recovery resilience with Input-Output linear programming models," Energy Economics, Elsevier, vol. 68(C), pages 177-191.
    8. Darayi, Mohamad & Barker, Kash & Nicholson, Charles D., 2019. "A multi-industry economic impact perspective on adaptive capacity planning in a freight transportation network," International Journal of Production Economics, Elsevier, vol. 208(C), pages 356-368.
    9. Niknejad, Ali & Petrovic, Dobrila, 2016. "A fuzzy dynamic Inoperability Input–output Model for strategic risk management in Global Production Networks," International Journal of Production Economics, Elsevier, vol. 179(C), pages 44-58.
    10. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    11. Krista Danielle S. Yu & Kathleen B. Aviso & Michael Angelo B. Promentilla & Joost R. Santos & Raymond R. Tan, 2016. "A weighted fuzzy linear programming model in economic input–output analysis: an application to risk management of energy system disruptions," Environment Systems and Decisions, Springer, vol. 36(2), pages 183-195, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selerio, Egberto & Maglasang, Renan, 2021. "Minimizing production loss consequent to disasters using a subsidy optimization model: a pandemic case," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 112-124.
    2. Irfan Ahmed & Claudio Socci & Rosita Pretaroli & Francesca Severini & Stefano Deriu, 2022. "Socioeconomic spillovers of the 2016–2017 Italian earthquakes: a bi-regional inoperability model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 426-453, January.
    3. Pradeep V. Mandapaka & Edmond Y. M. Lo, 2023. "Assessing Shock Propagation and Cascading Uncertainties Using the Input–Output Framework: Analysis of an Oil Refinery Accident in Singapore," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    4. Giovanni Marin & Marco Modica, 2016. "Mapping the exposure to natural disaster losses for Italian municipalities," SEEDS Working Papers 0916, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Oct 2016.
    5. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    6. Carlos Adri?n Romero & Omar Osvaldo Chisari & Leonardo Javier Mastronardi & Arturo Leonardo V?squez Cordano, 2015. "The cost of failing to prevent gas supply interruption: A CGE assessment for Peru," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2015(2), pages 131-148.
    7. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    8. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    9. Jan Oosterhaven, 2017. "On the limited usability of the inoperability IO model," Economic Systems Research, Taylor & Francis Journals, vol. 29(3), pages 452-461, July.
    10. Naqvi, Asjad, 2017. "Deep Impact: Geo-Simulations as a Policy Toolkit for Natural Disasters," World Development, Elsevier, vol. 99(C), pages 395-418.
    11. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    12. Umberto Monarca & Ernesto Cassetta & Alessandro Sarra & Cesare Pozzi, 2015. "Integrating renewable energy sources into electricity markets: Power system operation, resource adequacy and market design," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2015(2), pages 149-166.
    13. Oosterhaven, Jan, 2015. "On the doubtful usability of the inoperability IO model," Research Report 15008-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    14. Otto, C. & Willner, S.N. & Wenz, L. & Frieler, K. & Levermann, A., 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 232-269.
    15. Suman K SHARMA, 2010. "Socio-Economic Aspects of Disaster’s Impact: An Assessment of Databases and Methodologies," Economic Growth Centre Working Paper Series 1001, Nanyang Technological University, School of Social Sciences, Economic Growth Centre.
    16. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
    17. H. Lin & Y. Kuo & D. Shaw & M. Chang & T. Kao, 2012. "Regional economic impact analysis of earthquakes in northern Taiwan and its implications for disaster reduction policies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 603-620, March.
    18. Trond G. Husby & Elco E. Koks, 2017. "Household migration in disaster impact analysis: incorporating behavioural responses to risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 287-305, May.
    19. Jan Oosterhaven & Johannes Többen, 2017. "Wider economic impacts of heavy flooding in Germany: a non-linear programming approach," Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(4), pages 404-428, October.
    20. Juan C. Surís-Regueiro & José L. Santiago, 2016. "An Input-Output methodological proposal to quantifying socio economic impacts linked to supply shocks," Working Papers 1603, Universidade de Vigo, Departamento de Economía Aplicada.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:168:y:2015:i:c:p:71-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.