IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i16p4327-d256486.html
   My bibliography  Save this article

Enterprise Resilience Assessment—A Quantitative Approach

Author

Listed:
  • Raquel Sanchis

    (Research Centre on Production Management and Engineering (CIGIP), Universitat Politècnica de València, Escuela Politécnica Superior de Alcoy, Calle Alarcón, nº1, 03801 Alcoy (Alicante), Spain)

  • Raúl Poler

    (Research Centre on Production Management and Engineering (CIGIP), Universitat Politècnica de València, Escuela Politécnica Superior de Alcoy, Calle Alarcón, nº1, 03801 Alcoy (Alicante), Spain)

Abstract

Enterprise resilience is a key capacity to guarantee enterprises’ long-term continuity. This paper proposes a quantitative approach to enhance enterprise resilience by selecting optimal preventive actions to be activated to cushion the impact of disruptive events and to improve preparedness capability, one of the pillars of the enterprise resilience capacity. The proposed algorithms combine the dynamic programming approach with attenuation formulas to model real improvements when a combined set of preventive actions is activated for the same disruptive event. A numerical example is presented that shows remarkable reductions in the expected annual cost due to potential disruptive events.

Suggested Citation

  • Raquel Sanchis & Raúl Poler, 2019. "Enterprise Resilience Assessment—A Quantitative Approach," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4327-:d:256486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/16/4327/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/16/4327/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timothy Prior & Jonas Hagmann, 2014. "Measuring resilience: methodological and political challenges of a trend security concept," Journal of Risk Research, Taylor & Francis Journals, vol. 17(3), pages 281-298, March.
    2. H. Martin Weingartner & David N. Ness, 1967. "Methods for the Solution of the Multidimensional 0/1 Knapsack Problem," Operations Research, INFORMS, vol. 15(1), pages 83-103, February.
    3. Reyes Levalle, Rodrigo & Nof, Shimon Y., 2015. "Resilience by teaming in supply network formation and re-configuration," International Journal of Production Economics, Elsevier, vol. 160(C), pages 80-93.
    4. Vincent Boyer & Didier El Baz & Moussa Elkihel, 2010. "Solution of multidimensional knapsack problems via cooperation of dynamic programming and branch and bound," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 4(4), pages 434-449.
    5. Oliva, Fábio Lotti, 2016. "A maturity model for enterprise risk management," International Journal of Production Economics, Elsevier, vol. 173(C), pages 66-79.
    6. Baghersad, Milad & Zobel, Christopher W., 2015. "Economic impact of production bottlenecks caused by disasters impacting interdependent industry sectors," International Journal of Production Economics, Elsevier, vol. 168(C), pages 71-80.
    7. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2016. "A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 116-133.
    8. Richard Bellman, 1954. "Some Applications of the Theory of Dynamic Programming---A Review," Operations Research, INFORMS, vol. 2(3), pages 275-288, August.
    9. Joel Cord, 1964. "A Method for Allocating Funds to Investment Projects when Returns are Subject to Uncertainty," Management Science, INFORMS, vol. 10(2), pages 335-341, January.
    10. H. Martin Weingartner, 1966. "Capital Budgeting of Interrelated Projects: Survey and Synthesis," Management Science, INFORMS, vol. 12(7), pages 485-516, March.
    11. Dormady, Noah & Roa-Henriquez, Alfredo & Rose, Adam, 2019. "Economic resilience of the firm: A production theory approach," International Journal of Production Economics, Elsevier, vol. 208(C), pages 446-460.
    12. Anna Corinna Cagliano & Alberto De Marco & Sabrina Grimaldi & Carlo Rafele, 2012. "An integrated approach to supply chain risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 15(7), pages 817-840, August.
    13. Ana Paula Barroso & Virginia Helena Machado & Virgilio Cruz Machado, 2011. "Supply Chain Resilience Using the Mapping Approach," Chapters, in: Pengzhong Li (ed.), Supply Chain Management, IntechOpen.
    14. Bilal M. Ayyub, 2014. "Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 340-355, February.
    15. Richard Bellman, 1954. "On some applications of the theory of dynamic programming to logistics," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(2), pages 141-153, June.
    16. Vanpoucke, E. & Boyer, K. & Vereecke, A., 2009. "Supply chain information flow strategies: an empirical taxonomy," Vlerick Leuven Gent Management School Working Paper Series 2009-03, Vlerick Leuven Gent Management School.
    17. Roland W. Scholz & Yann B. Blumer & Fridolin S. Brand, 2012. "Risk, vulnerability, robustness, and resilience from a decision-theoretic perspective," Journal of Risk Research, Taylor & Francis Journals, vol. 15(3), pages 313-330, March.
    18. G. L. Nemhauser & Z. Ullmann, 1969. "Discrete Dynamic Programming and Capital Allocation," Management Science, INFORMS, vol. 15(9), pages 494-505, May.
    19. Neelke Doorn, 2017. "Resilience indicators: opportunities for including distributive justice concerns in disaster management," Journal of Risk Research, Taylor & Francis Journals, vol. 20(6), pages 711-731, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beatriz Andres & Giulio Marcucci, 2020. "A Strategies Alignment Approach to Manage Disruptive Events in Collaborative Networks," Sustainability, MDPI, vol. 12(7), pages 1-23, March.
    2. Dong Wang & Shengli Chen, 2022. "Digital Transformation and Enterprise Resilience: Evidence from China," Sustainability, MDPI, vol. 14(21), pages 1, October.
    3. Raquel Sanchis & Alfonso Duran-Heras & Raul Poler, 2020. "Optimising the Preparedness Capacity of Enterprise Resilience Using Mathematical Programming," Mathematics, MDPI, vol. 8(9), pages 1-29, September.
    4. Raquel Sanchis & Maria Rosa Sanchis-Gisbert & Raul Poler, 2020. "Conceptualisation of the Three-Dimensional Matrix of Collaborative Knowledge Barriers," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    5. Bhavya Sharma & Murari Lal Mittal & Gunjan Soni & Bharti Ramtiyal, 2023. "An Implementation Framework for Resiliency Assessment in a Supply Chain," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 591-614, December.
    6. Raquel Sanchis & Luca Canetta & Raúl Poler, 2020. "A Conceptual Reference Framework for Enterprise Resilience Enhancement," Sustainability, MDPI, vol. 12(4), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    2. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    3. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    4. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    5. Dawei Chen & Fangxu Mo & Ye Chen & Jun Zhang & Xinyu You, 2022. "Optimization of Ramp Locations along Freeways: A Dynamic Programming Approach," Sustainability, MDPI, vol. 14(15), pages 1-13, August.
    6. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Christian Meier & Dennis Kundisch & Jochen Willeke, 2017. "Is it Worth the Effort?," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(2), pages 81-95, April.
    8. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    9. Bartłomiej Kocot & Paweł Czarnul & Jerzy Proficz, 2023. "Energy-Aware Scheduling for High-Performance Computing Systems: A Survey," Energies, MDPI, vol. 16(2), pages 1-28, January.
    10. Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2021. "A Multi-Depot Vehicle Routing Problem with Stochastic Road Capacity and Reduced Two-Stage Stochastic Integer Linear Programming Models for Rollout Algorithm," Mathematics, MDPI, vol. 9(13), pages 1-44, July.
    11. Bagloee, Saeed Asadi & Asadi, Mohsen, 2015. "Prioritizing road extension projects with interdependent benefits under time constraint," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 196-216.
    12. Peter Schober & Julian Valentin & Dirk Pflüger, 2022. "Solving High-Dimensional Dynamic Portfolio Choice Models with Hierarchical B-Splines on Sparse Grids," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 185-224, January.
    13. Matthias Breuer & David Windisch, 2019. "Investment Dynamics and Earnings‐Return Properties: A Structural Approach," Journal of Accounting Research, Wiley Blackwell, vol. 57(3), pages 639-674, June.
    14. Calzada Olvera, Beatriz & Gonzalez-Sauri, Mario & Moya, David-Alexander Harings & Louvin, Federico, 2022. "Covid-19 in Central America: Firm resilience and policy responses on employment," Journal of Policy Modeling, Elsevier, vol. 44(6), pages 1280-1295.
    15. Pereira, Carla Roberta & Lago da Silva, Andrea & Tate, Wendy Lea & Christopher, Martin, 2020. "Purchasing and supply management (PSM) contribution to supply-side resilience," International Journal of Production Economics, Elsevier, vol. 228(C).
    16. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2020. "Loading tow trains ergonomically for just-in-time part supply," European Journal of Operational Research, Elsevier, vol. 284(1), pages 325-344.
    17. Michael J. Pennock & William B. Rouse & Diane L. Kollar, 2007. "Transforming the Acquisition Enterprise: A Framework for Analysis and a Case Study of Ship Acquisition," Systems Engineering, John Wiley & Sons, vol. 10(2), pages 99-117, June.
    18. Quetschlich, Mathias & Moetz, André & Otto, Boris, 2021. "Optimisation model for multi-item multi-echelon supply chains with nested multi-level products," European Journal of Operational Research, Elsevier, vol. 290(1), pages 144-158.
    19. Iman Ahmadianfar & Saeed Noshadian & Nadir Ahmed Elagib & Meysam Salarijazi, 2021. "Robust Diversity-based Sine-Cosine Algorithm for Optimizing Hydropower Multi-reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3513-3538, September.
    20. Li, Yapeng & Tang, Xiaolin & Lin, Xianke & Grzesiak, Lech & Hu, Xiaosong, 2022. "The role and application of convex modeling and optimization in electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4327-:d:256486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.