IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v511y2018icp104-126.html
   My bibliography  Save this article

A new formulation of the Dagum distribution in terms of income inequality and poverty measures

Author

Listed:
  • Domma, Filippo
  • Condino, Francesca
  • Giordano, Sabrina

Abstract

We provide new formulations of the Dagum family (Dagum, 1977), widely appreciated to model the income distribution, by making its parameters directly interpretable in terms of income median, inequality and poverty measures. The novelty is that the new distributions still belong to the class of Dagum distributions and enjoy its properties, but more the new parameters have a clear economic meaning. So the effects of determinants can be evaluated, directly and simultaneously, on measures of strategic relevance. This may be attractive since it helps policy makers to determine the appropriate response to the determinants of inequality and poverty. The peculiarities of three special cases are discussed and exemplified on real data from the Survey on Household Income and Wealth provided by the Bank of Italy.

Suggested Citation

  • Domma, Filippo & Condino, Francesca & Giordano, Sabrina, 2018. "A new formulation of the Dagum distribution in terms of income inequality and poverty measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 104-126.
  • Handle: RePEc:eee:phsmap:v:511:y:2018:i:c:p:104-126
    DOI: 10.1016/j.physa.2018.07.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118308914
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. François Bourguignon & Maurizio Bussolo & Luiz A. Pereira da Silva, 2008. "The Impact of Macroeconomic Policies on Poverty and Income Distribution : Macro-Micro Evaluation Techniques and Tools," World Bank Publications, The World Bank, number 6586, January.
    2. Heshmati, Almas, 2004. "A Review of Decomposition of Income Inequality," IZA Discussion Papers 1221, Institute for the Study of Labor (IZA).
    3. McDonald, James B, 1984. "Some Generalized Functions for the Size Distribution of Income," Econometrica, Econometric Society, vol. 52(3), pages 647-663, May.
    4. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    5. Andrés Rodríguez-Pose & Vassilis Tselios, 2009. "Education And Income Inequality In The Regions Of The European Union," Journal of Regional Science, Wiley Blackwell, vol. 49(3), pages 411-437.
    6. Clementi, F. & Gallegati, M., 2005. "Power law tails in the Italian personal income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 427-438.
    7. Majumder, Amita & Chakravarty, Satya Ranjan, 1990. "Distribution of Personal Income: Development of a New Model and Its Application to U.S. Income Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 189-196, April-Jun.
    8. Cowell, Frank A & Jenkins, Stephen P, 1995. "How Much Inequality Can We Explain? A Methodology and an Application to the United States," Economic Journal, Royal Economic Society, vol. 105(429), pages 421-430, March.
    9. Edward L. Glaeser & Matt Resseger & Kristina Tobio, 2009. "Inequality In Cities," Journal of Regional Science, Wiley Blackwell, vol. 49(4), pages 617-646.
    10. Pudney, Stephen, 1999. " On Some Statistical Methods for Modelling the Incidence of Poverty," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(3), pages 385-408, August.
    11. Clementi, F. & Di Matteo, T. & Gallegati, M. & Kaniadakis, G., 2008. "The κ-generalized distribution: A new descriptive model for the size distribution of incomes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3201-3208.
    12. Carmelo Garcia Perez & Mercedes Prieto Alaiz, 2011. "Using the Dagum model to explain changes in personal income distribution," Applied Economics, Taylor & Francis Journals, vol. 43(28), pages 4377-4386.
    13. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    14. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    15. Peracchi, Franco, 2002. "On estimating conditional quantiles and distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 433-447, February.
    16. Chami Figueira, F. & Moura, N.J. & Ribeiro, M.B., 2011. "The Gompertz–Pareto income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 689-698.
    17. Sarabia, José María & Prieto, Faustino & Trueba, Carmen & Jordá, Vanesa, 2013. "About the modified Gaussian family of income distributions with applications to individual incomes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1398-1408.
    18. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    19. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    20. Bourguignon, Marcelo & Saulo, Helton & Fernandez, Rodrigo Nobre, 2016. "A new Pareto-type distribution with applications in reliability and income data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 166-175.
    21. Alfons, Andreas & Templ, Matthias, 2013. "Estimation of Social Exclusion Indicators from Complex Surveys: The R Package laeken," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i15).
    22. Stephen G. Donald & Yu‐Chin Hsu & Garry F. Barrett, 2012. "Incorporating covariates in the measurement of welfare and inequality: methods and applications," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 1-30, February.
    23. Martin Biewen & Stephen Jenkins, 2005. "A framework for the decomposition of poverty differences with an application to poverty differences between countries," Empirical Economics, Springer, vol. 30(2), pages 331-358, September.
    24. Stephen P. Jenkins, 2009. "Distributionally-Sensitive Inequality Indices And The Gb2 Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(2), pages 392-398, June.
    25. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554.
    26. Claudio Quintano & Antonella D'Agostino, 2006. "Studying Inequality In Income Distribution Of Single‐Person Households In Four Developed Countries," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 52(4), pages 525-546, December.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:511:y:2018:i:c:p:104-126. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.