IDEAS home Printed from https://ideas.repec.org/p/bsl/wpaper/2007-23.html
   My bibliography  Save this paper

A Guide to the Dagum Distributions

Author

Listed:
  • Kleiber, Christian

    (University of Basel)

Abstract

In a series of papers in the 1970s, Camilo Dagum proposed several variants of NEWLINE a new model for the size distribution of personal income. This Chapter traces the NEWLINE genesis of the Dagum distributions in applied economics and points out parallel NEWLINE developments in several branches of the applied statistics literature. It also provides NEWLINE interrelations with other statistical distributions as well as aspects that are of special NEWLINE interest in the income distribution feld, including Lorenz curves and the Lorenz order NEWLINE and inequality measures. The Chapter ends with a survey of empirical applications NEWLINE of the Dagum distributions, many published in Romance language periodicals.

Suggested Citation

  • Kleiber, Christian, 2007. "A Guide to the Dagum Distributions," Working papers 2007/23, Faculty of Business and Economics - University of Basel.
  • Handle: RePEc:bsl:wpaper:2007/23
    as

    Download full text from publisher

    File URL: https://edoc.unibas.ch/61230/1/20180305141821_5a9d439d76be5.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kleiber, Christian, 2005. "The Lorenz curve in economics and econometrics," Technical Reports 2005,30, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    3. Jenkins, Stephen P., 2007. "Inequality and the GB2 Income Distribution," IZA Discussion Papers 2831, Institute of Labor Economics (IZA).
    4. Majumder, Amita & Chakravarty, Satya Ranjan, 1990. "Distribution of Personal Income: Development of a New Model and Its Application to U.S. Income Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 189-196, April-Jun.
    5. Łukasiewicz, Piotr & Orłowski, Arkadiusz, 2004. "Probabilistic models of income distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 146-151.
    6. Paola Palmitesta & Corrado Provasi & Cosimo Spera, 2000. "Confidence Interval Estimation for Inequality Indices of the Gini Family," Computational Economics, Springer;Society for Computational Economics, vol. 16(1/2), pages 137-147, October.
    7. Gerhard Glomm & B. Ravikumar, 1998. "Opting out of publicly provided services: A majority voting result," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(2), pages 187-199.
    8. Hasegawa, Hikaru & Kozumi, Hideo, 2003. "Estimation of Lorenz curves: a Bayesian nonparametric approach," Journal of Econometrics, Elsevier, vol. 115(2), pages 277-291, August.
    9. Fred Campano, 1991. "Recent Trends in U.S. Family Income Distribution: A Comparison of All, White, and Black Families," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 13(3), pages 337-350, March.
    10. Kleiber, Christian, 1996. "Dagum vs. Singh-Maddala income distributions," Economics Letters, Elsevier, vol. 53(3), pages 265-268, December.
    11. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    12. Cowell, Frank A. & Victoria-Feser, Maria-Pia, 2006. "Distributional Dominance With Trimmed Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 291-300, July.
    13. McDonald, James B & Mantrala, Anand, 1995. "The Distribution of Personal Income: Revisited," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 201-204, April-Jun.
    14. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    15. Dagum, Camilo & Slottje, Daniel J., 2000. "A new method to estimate the level and distribution of household human capital with application," Structural Change and Economic Dynamics, Elsevier, vol. 11(1-2), pages 67-94, July.
    16. Palmitesta, Paola & Provasi, Corrado & Spera, Cosimo, 1999. "Approximated Distributions of Sampling Inequality Indices," Computational Economics, Springer;Society for Computational Economics, vol. 13(3), pages 211-226, June.
    17. Klonner, Stefan, 2000. "The first-order stochastic dominance ordering of the Singh-Maddala distribution," Economics Letters, Elsevier, vol. 69(2), pages 123-128, November.
    18. Duangkamon Chotikapanich & William E. Griffiths, 2006. "Bayesian Assessment of Lorenz and Stochastic Dominance in Income Distributions," Department of Economics - Working Papers Series 960, The University of Melbourne.
    19. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    20. Martin Biewen & Stephen Jenkins, 2005. "A framework for the decomposition of poverty differences with an application to poverty differences between countries," Empirical Economics, Springer, vol. 30(2), pages 331-358, September.
    21. Rubin Saposnik, 1981. "Rank-dominance in income distributions," Public Choice, Springer, vol. 36(1), pages 147-151, January.
    22. Claudio Quintano & Antonella D'Agostino, 2006. "Studying Inequality In Income Distribution Of Single‐Person Households In Four Developed Countries," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 52(4), pages 525-546, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    2. Kazuhiko Kakamu & Haruhisa Nishino, 2019. "Bayesian Estimation of Beta-type Distribution Parameters Based on Grouped Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 625-645, August.
    3. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    4. Michał Brzeziński, 2013. "Parametric Modelling of Income Distribution in Central and Eastern Europe," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(3), pages 207-230, September.
    5. Sung Y. Park & Anil K. Bera, 2018. "Information theoretic approaches to income density estimation with an application to the U.S. income data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
    6. Duangkamon Chotikapanich & William E. Griffiths, 2006. "Bayesian Assessment of Lorenz and Stochastic Dominance in Income Distributions," Department of Economics - Working Papers Series 960, The University of Melbourne.
    7. Kazuhiko Kakamu, 2016. "Simulation Studies Comparing Dagum and Singh–Maddala Income Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 593-605, December.
    8. Domma, Filippo & Condino, Francesca & Giordano, Sabrina, 2018. "A new formulation of the Dagum distribution in terms of income inequality and poverty measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 104-126.
    9. José María Sarabia & Vanesa Jordá & Faustino Prieto & Montserrat Guillén, 2020. "Multivariate Classes of GB2 Distributions with Applications," Mathematics, MDPI, vol. 9(1), pages 1-21, December.
    10. Kazuhiko Kakamu & Haruhisa Nishino, 2016. "Bayesian Estimation Of Beta-Type Distribution Parameters Based On Grouped Data," Discussion Papers 2016-08, Kobe University, Graduate School of Business Administration.
    11. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2003. "Poverty, Income Distribution and CGE Modeling: Does the Functional Form of Distribution Matter?," Cahiers de recherche 0332, CIRPEE.
    12. Maxim Pinkovskiy & Xavier Sala-i-Martin, 2009. "Parametric Estimations of the World Distribution of Income," NBER Working Papers 15433, National Bureau of Economic Research, Inc.
    13. Kleiber, Christian, 1996. "Dagum vs. Singh-Maddala income distributions," Economics Letters, Elsevier, vol. 53(3), pages 265-268, December.
    14. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    15. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2012. "A new model of income distribution: the κ-generalized distribution," Journal of Economics, Springer, vol. 105(1), pages 63-91, January.
    16. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D. S. Prasada Rao, 2018. "Using the GB2 Income Distribution," Econometrics, MDPI, vol. 6(2), pages 1-24, April.
    17. Christophe Muller, 2001. "The Properties of the Watts Poverty Index under Lognormality," Economics Bulletin, AccessEcon, vol. 9(1), pages 1-9.
    18. F. Clementi & M. Gallegati & G. Kaniadakis, 2012. "A generalized statistical model for the size distribution of wealth," Papers 1209.4787, arXiv.org, revised Dec 2012.
    19. Feng Zhu, 2005. "A nonparametric analysis of the shape dynamics of the US personal income distribution: 1962-2000," BIS Working Papers 184, Bank for International Settlements.
    20. Sohn, Alexander & Klein, Nadja & Kneib, Thomas, 2014. "A new semiparametric approach to analysing conditional income distributions," University of Göttingen Working Papers in Economics 192, University of Goettingen, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bsl:wpaper:2007/23. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/wwzbsch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WWZ (email available below). General contact details of provider: https://edirc.repec.org/data/wwzbsch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.