IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i23p5960-5970.html
   My bibliography  Save this article

Random-growth urban model with geographical fitness

Author

Listed:
  • Kii, Masanobu
  • Akimoto, Keigo
  • Doi, Kenji

Abstract

This paper formulates a random-growth urban model with a notion of geographical fitness. Using techniques of complex-network theory, we study our system as a type of preferential-attachment model with fitness, and we analyze its macro behavior to clarify the properties of the city-size distributions it predicts. First, restricting the geographical fitness to take positive values and using a continuum approach, we show that the city-size distributions predicted by our model asymptotically approach Pareto distributions with coefficients greater than unity. Then, allowing the geographical fitness to take negative values, we perform local coefficient analysis to show that the predicted city-size distributions can deviate from Pareto distributions, as is often observed in actual city-size distributions. As a result, the model we propose can generate a generic class of city-size distributions, including but not limited to Pareto distributions. For applications to city-population projections, our simple model requires randomness only when new cities are created, not during their subsequent growth. This property leads to smooth trajectories of city population growth, in contrast to other models using Gibrat’s law. In addition, a discrete form of our dynamical equations can be used to estimate past city populations based on present-day data; this fact allows quantitative assessment of the performance of our model. Further study is needed to determine appropriate formulas for the geographical fitness.

Suggested Citation

  • Kii, Masanobu & Akimoto, Keigo & Doi, Kenji, 2012. "Random-growth urban model with geographical fitness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5960-5970.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:5960-5970
    DOI: 10.1016/j.physa.2012.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112007029
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henderson, J V, 1974. "The Sizes and Types of Cities," American Economic Review, American Economic Association, vol. 64(4), pages 640-656, September.
    2. Bosker, Maarten & Brakman, Steven & Garretsen, Harry & Schramm, Marc, 2008. "A century of shocks: The evolution of the German city size distribution 1925-1999," Regional Science and Urban Economics, Elsevier, vol. 38(4), pages 330-347, July.
    3. Masahisa Fujita & Paul Krugman & Anthony J. Venables, 2001. "The Spatial Economy: Cities, Regions, and International Trade," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262561476, December.
    4. Esteban Rossi-Hansberg & Mark L. J. Wright, 2007. "Urban Structure and Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(2), pages 597-624.
    5. Malcolm Asadoorian, 2008. "Simulating the spatial distribution of population and emissions to 2100," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(3), pages 199-221, March.
    6. Rosen, Kenneth T. & Resnick, Mitchel, 1980. "The size distribution of cities: An examination of the Pareto law and primacy," Journal of Urban Economics, Elsevier, vol. 8(2), pages 165-186, September.
    7. Ergün, G. & Rodgers, G.J., 2002. "Growing random networks with fitness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 303(1), pages 261-272.
    8. Nitsch, Volker, 2005. "Zipf zipped," Journal of Urban Economics, Elsevier, vol. 57(1), pages 86-100, January.
    9. Soo, Kwok Tong, 2005. "Zipf's Law for cities: a cross-country investigation," Regional Science and Urban Economics, Elsevier, vol. 35(3), pages 239-263, May.
    10. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    11. Gabaix, Xavier & Ioannides, Yannis M., 2004. "The evolution of city size distributions," Handbook of Regional and Urban Economics, in: J. V. Henderson & J. F. Thisse (ed.), Handbook of Regional and Urban Economics, edition 1, volume 4, chapter 53, pages 2341-2378, Elsevier.
    12. Duncan Black & Vernon Henderson, 2003. "Urban evolution in the USA," Journal of Economic Geography, Oxford University Press, vol. 3(4), pages 343-372, October.
    13. Sarabia, José María & Prieto, Faustino, 2009. "The Pareto-positive stable distribution: A new descriptive model for city size data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4179-4191.
    14. Xavier Gabaix, 1999. "Zipf's Law for Cities: An Explanation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 739-767.
    15. Donald R. Davis & David E. Weinstein, 2002. "Bones, Bombs, and Break Points: The Geography of Economic Activity," American Economic Review, American Economic Association, vol. 92(5), pages 1269-1289, December.
    16. Xavier Gabaix, 1999. "Zipf's Law and the Growth of Cities," American Economic Review, American Economic Association, vol. 89(2), pages 129-132, May.
    17. Li, Xiang & Ying Jin, Yu & Chen, Guanrong, 2003. "Complexity and synchronization of the World trade Web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 328(1), pages 287-296.
    18. Benguigui, Lucien & Blumenfeld-Lieberthal, Efrat, 2009. "The temporal evolution of the city size distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1187-1195.
    19. Moura, Newton J. & Ribeiro, Marcelo B., 2006. "Zipf law for Brazilian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 441-448.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    2. Kii, Masanobu & Nakanishi, Hitomi & Nakamura, Kazuki & Doi, Kenji, 2016. "Transportation and spatial development: An overview and a future direction," Transport Policy, Elsevier, vol. 49(C), pages 148-158.
    3. Xiu, Gezhi & Wang, Jianying & Liu, Yu, 2023. "Spatial Yule Model for Urban Growth with Shared Resources," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    4. Mittal, Shravika & Chakraborty, Tanmoy & Pal, Siddharth, 2022. "Dynamics of node influence in network growth models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    5. Young, D.S., 2013. "Approximate tolerance limits for Zipf–Mandelbrot distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1702-1711.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarabia, José María & Prieto, Faustino, 2009. "The Pareto-positive stable distribution: A new descriptive model for city size data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4179-4191.
    2. Guy Michaels & Ferdinand Rauch & Stephen J. Redding, 2012. "Urbanization and Structural Transformation," The Quarterly Journal of Economics, Oxford University Press, vol. 127(2), pages 535-586.
    3. Valente J. Matlaba & Mark J. Holmes & Philip McCann & Jacques Poot, 2013. "A Century Of The Evolution Of The Urban System In Brazil," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 25(3), pages 129-151, November.
    4. Duranton, Gilles & Puga, Diego, 2014. "The Growth of Cities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 5, pages 781-853, Elsevier.
    5. Chen, Zhihong & Fu, Shihe & Zhang, Dayong, 2010. "Searching for the parallel growth of cities," MPRA Paper 21528, University Library of Munich, Germany.
    6. Ho Yeon KIM & Petra de Jong & Jan Rouwendal & Aleid Brouwer, 2012. "Shrinking population and the urban hierarchy [Housing preferences and attribute importance among Dutch older adults: a conjoint choice experiment]," ERSA conference papers ersa12p350, European Regional Science Association.
    7. Lee, Sanghoon & Li, Qiang, 2013. "Uneven landscapes and city size distributions," Journal of Urban Economics, Elsevier, vol. 78(C), pages 19-29.
    8. Bosker, Maarten & Brakman, Steven & Garretsen, Harry & Schramm, Marc, 2008. "A century of shocks: The evolution of the German city size distribution 1925-1999," Regional Science and Urban Economics, Elsevier, vol. 38(4), pages 330-347, July.
    9. Kristian Giesen & Jens Südekum, 2011. "Zipf's law for cities in the regions and the country," Journal of Economic Geography, Oxford University Press, vol. 11(4), pages 667-686, July.
    10. Arshad, Sidra & Hu, Shougeng & Ashraf, Badar Nadeem, 2019. "Zipf’s law, the coherence of the urban system and city size distribution: Evidence from Pakistan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 87-103.
    11. Cuberes David, 2009. "A Model of Sequential City Growth," The B.E. Journal of Macroeconomics, De Gruyter, vol. 9(1), pages 1-41, May.
    12. repec:wyi:journl:002175 is not listed on IDEAS
    13. Kim, Ho Yeon, 2012. "Shrinking population and the urban hierarchy," IDE Discussion Papers 360, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    14. Yannis M. Ioannides & Henry G. Overman & Esteban Rossi-Hansberg & Kurt Schmidheiny, 2008. "The effect of information and communication technologies on urban structure [‘Trade and circuses: Explaining urban giants’]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 23(54), pages 202-242.
    15. Cuberes, David, 2007. "A Model of Sequential City Growth," MPRA Paper 2172, University Library of Munich, Germany.
    16. Gilles DURANTON, 2012. "La Croissance Urbaine : Déterminismes Vs Bruit," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 36, pages 11-30.
    17. Esteban Rossi-Hansberg & Mark L. J. Wright, 2007. "Urban Structure and Growth," Review of Economic Studies, Oxford University Press, vol. 74(2), pages 597-624.
    18. Sebastien TERRA, 2009. "Zipf's Law for Cities: On a New Testing Procedure," Working Papers 200920, CERDI.
    19. Zhihong Chen & Shihe Fu & Dayong Zhang, 2013. "Searching for the Parallel Growth of Cities in China," Urban Studies, Urban Studies Journal Limited, vol. 50(10), pages 2118-2135, August.
    20. Zelai Xu & Nong Zhu, 2014. "City size distribution in China: are large cities dominant?," CIRANO Working Papers 2014s-04, CIRANO.
    21. Rafael GONZÀLEZ-VAL, 2012. "Zipf’S Law: Main Issues In Empirical Work," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 36, pages 147-164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:5960-5970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.