IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

On interrelations of recurrences and connectivity trends between stock indices

  • Goswami, B.
  • Ambika, G.
  • Marwan, N.
  • Kurths, J.
Registered author(s):

    Financial data has been extensively studied for correlations using Pearson’s cross-correlation coefficient ρ as the point of departure. We employ an estimator based on recurrence plots — the correlation of probability of recurrence (CPR) — to analyze connections between nine stock indices spread worldwide. We suggest a slight modification of the CPR approach in order to get more robust results. We examine trends in CPR for an approximately 19-month window moved along the time series and compare them to trends in ρ. Binning CPR into three levels of connectedness (strong, moderate, and weak), we extract the trends in number of connections in each bin over time. We also look at the behavior of CPR during the dot-com bubble by shifting the time series to align their peaks. CPR mainly uncovers that the markets move in and out of periods of strong connectivity erratically, instead of moving monotonically towards increasing global connectivity. This is in contrast to ρ, which gives a picture of ever-increasing correlation. CPR also exhibits that time-shifted markets have high connectivity around the dot-com bubble of 2000. We use significance tests using twin surrogates to interpret all the measures estimated in the study.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112003123
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 391 (2012)
    Issue (Month): 18 ()
    Pages: 4364-4376

    as
    in new window

    Handle: RePEc:eee:phsmap:v:391:y:2012:i:18:p:4364-4376
    Contact details of provider: Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Onnela, J.-P. & Chakraborti, A. & Kaski, K. & Kertész, J., 2003. "Dynamic asset trees and Black Monday," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 247-252.
    2. Annalisa Fabretti & Marcel Ausloos, 2005. "Recurrence analysis of the NASDAQ crash of April 2000," Papers physics/0505170, arXiv.org.
    3. Coelho, Ricardo & Gilmore, Claire G. & Lucey, Brian & Richmond, Peter & Hutzler, Stefan, 2007. "The evolution of interdependence in world equity markets—Evidence from minimum spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 455-466.
    4. Bouchaud, Jean-Philippe & Potters, Marc, 2001. "More stylized facts of financial markets: leverage effect and downside correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 60-70.
    5. Eom, Cheoljun & Oh, Gabjin & Kim, Seunghwan, 2007. "Deterministic factors of stock networks based on cross-correlation in financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 139-146.
    6. Giovanni Bonanno & Fabrizio Lillo & Rosario N. Mantegna, 2001. "Levels of complexity in financial markets," Papers cond-mat/0104369, arXiv.org.
    7. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B - Condensed Matter and Complex Systems, Springer, vol. 11(1), pages 193-197, September.
    8. Conlon, T. & Ruskin, H.J. & Crane, M., 2009. "Cross-correlation dynamics in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 705-714.
    9. Marc Potters & Jean-Philippe Bouchaud, 2001. "More stylized facts of financial markets: leverage effect and downside correlations," Science & Finance (CFM) working paper archive 29960, Science & Finance, Capital Fund Management.
    10. Engle, Robert F & Granger, Clive W J, 1987. "Co-integration and Error Correction: Representation, Estimation, and Testing," Econometrica, Econometric Society, vol. 55(2), pages 251-76, March.
    11. Jean Imbs, 2004. "Trade, Finance, Specialization, and Synchronization," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 723-734, August.
    12. Bastos, João A. & Caiado, Jorge, 2011. "Recurrence quantification analysis of global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1315-1325.
    13. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B - Condensed Matter and Complex Systems, Springer, vol. 38(2), pages 363-371, 03.
    14. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    15. Cheoljun Eom & Gabjin Oh & Seunghwan Kim, 2007. "Deterministic Factors of Stock Networks based on Cross-correlation in Financial Market," Papers 0705.0076, arXiv.org.
    16. Drożdż, S & Grümmer, F & Ruf, F & Speth, J, 2001. "Towards identifying the world stock market cross-correlations: DAX versus Dow Jones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(1), pages 226-234.
    17. Strozzi, Fernanda & Zaldı́var, José-Manuel & Zbilut, Joseph P, 2002. "Application of nonlinear time series analysis techniques to high-frequency currency exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(3), pages 520-538.
    18. T. Conlon & H. J. Ruskin & M. Crane, 2009. "Multiscaled Cross-Correlation Dynamics In Financial Time-Series," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 439-454.
    19. Guhathakurta, Kousik & Bhattacharya, Basabi & Chowdhury, A. Roy, 2010. "Using recurrence plot analysis to distinguish between endogenous and exogenous stock market crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1874-1882.
    20. Wilcox, Diane & Gebbie, Tim, 2004. "On the analysis of cross-correlations in South African market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 294-298.
    21. Coelho, R. & Hutzler, S. & Repetowicz, P. & Richmond, P., 2007. "Sector analysis for a FTSE portfolio of stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 615-626.
    22. Çukur, Sadik & Eryiğit, Mehmet & Eryiğit, Resul, 2007. "Cross correlations in an emerging market financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 555-564.
    23. Kwapień, J & Drożdż, S & Speth, J, 2004. "Time scales involved in emergent market coherence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 231-242.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:18:p:4364-4376. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.