IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v29y1998i3p285-302.html
   My bibliography  Save this article

Unified treatment of the problem of existence of maximal elements in binary relations: a characterization

Author

Listed:
  • Llinares, Juan-Vicente

Abstract

The aim of this paper is twofold. On the one hand to present by means of a unique statement an existence result which covers both ways (convexity and acyclicity) of analyzing the problem of existence of maximal elements of non transitive binary relations. And on the other hand, to introduce the concept of an abstract convexity structure, which we call mc-spaces, that generalizes the notion of usual convexity. It is presented as a powerful tool which allows many problems which have only been analyzed (previously) under convexity conditions to be solved.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Llinares, Juan-Vicente, 1998. "Unified treatment of the problem of existence of maximal elements in binary relations: a characterization," Journal of Mathematical Economics, Elsevier, vol. 29(3), pages 285-302, April.
  • Handle: RePEc:eee:mateco:v:29:y:1998:i:3:p:285-302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(97)00024-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Starr, Ross M, 1969. "Quasi-Equilibria in Markets with Non-Convex Preferences," Econometrica, Econometric Society, vol. 37(1), pages 25-38, January.
    2. Bergstrom, Theodore C., 1975. "Maximal elements of acyclic relations on compact sets," Journal of Economic Theory, Elsevier, vol. 10(3), pages 403-404, June.
    3. Walker, Mark, 1977. "On the existence of maximal elements," Journal of Economic Theory, Elsevier, vol. 16(2), pages 470-474, December.
    4. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    5. Guoqiang Tian, 1993. "Necessary and Sufficient Conditions for Maximization of a Class of Preference Relations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(4), pages 949-958.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alcantud, J.C.R., 2008. "Mixed choice structures, with applications to binary and non-binary optimization," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 242-250, February.
    2. Francesco Ciardiello, 2007. "Convexity on Nash Equilibria without Linear Structure," Quaderni DSEMS 15-2007, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
    3. M. Carmen Sánchez & Juan-Vicente Llinares & Begoña Subiza, 2003. "A KKM-result and an application for binary and non-binary choice functions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(1), pages 185-193, January.
    4. Hougaard, Jens Leth & Tvede, Mich, 2001. "The existence of maximal elements: generalized lexicographic relations," Journal of Mathematical Economics, Elsevier, vol. 36(2), pages 111-115, November.
    5. Llinarès, Juan Vicente, 1998. "Existence of equilibrium in generalized games with non-convex strategy spaces," CEPREMAP Working Papers (Couverture Orange) 9801, CEPREMAP.
    6. J. V. Llinares, 2000. "Existence of Equilibrium in Generalized Games with Abstract Convexity Structure," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 149-160, April.
    7. Llinarès, Juan Vicente, 1998. "Abstract convexity, some relations and applications," CEPREMAP Working Papers (Couverture Orange) 9803, CEPREMAP.
    8. Florian Brandl & Felix Brandt, 2020. "Arrovian Aggregation of Convex Preferences," Econometrica, Econometric Society, vol. 88(2), pages 799-844, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hougaard, Jens Leth & Tvede, Mich, 2001. "The existence of maximal elements: generalized lexicographic relations," Journal of Mathematical Economics, Elsevier, vol. 36(2), pages 111-115, November.
    2. Alcantud, J.C.R., 2008. "Mixed choice structures, with applications to binary and non-binary optimization," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 242-250, February.
    3. Duggan, John, 2011. "General conditions for the existence of maximal elements via the uncovered set," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 755-759.
    4. Llinares, Juan-Vicente & Sanchez, M. Carmen, 1999. "Non-binary choice functions on non-compact sets," Economics Letters, Elsevier, vol. 63(1), pages 29-32, April.
    5. Nehring, Klaus, 1996. "Maximal elements of non-binary choice functions on compact sets," Economics Letters, Elsevier, vol. 50(3), pages 337-340, March.
    6. Quartieri, Federico, 2021. "Existence of maximals via right traces," MPRA Paper 107189, University Library of Munich, Germany.
    7. John Duggan, 2011. "General Conditions for Existence of Maximal Elements via the Uncovered Set," RCER Working Papers 563, University of Rochester - Center for Economic Research (RCER).
    8. M. Carmen Sánchez & Juan-Vicente Llinares & Begoña Subiza, 2003. "A KKM-result and an application for binary and non-binary choice functions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(1), pages 185-193, January.
    9. Hougaard, Jens Leth & Tvede, Mich, 2002. "Benchmark selection: An axiomatic approach," European Journal of Operational Research, Elsevier, vol. 137(1), pages 218-228, February.
    10. Subiza, Begona & Peris, Josep E., 1997. "Numerical representation for lower quasi-continuous preferences," Mathematical Social Sciences, Elsevier, vol. 33(2), pages 149-156, April.
    11. Carlos Alós-Ferrer & Klaus Ritzberger, 2015. "On the characterization of preference continuity by chains of sets," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(2), pages 115-128, October.
    12. Andrikopoulos, Athanasios & Zacharias, Eleftherios, 2008. "General solutions for choice sets: The Generalized Optimal-Choice Axiom set," MPRA Paper 11645, University Library of Munich, Germany.
    13. José Carlos R. Alcantud & Tareq M. Al-shami & A. A. Azzam, 2021. "Caliber and Chain Conditions in Soft Topologies," Mathematics, MDPI, vol. 9(19), pages 1-15, September.
    14. Gutiérrez, José Manuel, 2009. "A characterization of compactness through preferences," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 131-133, January.
    15. Tian, Guoqiang & Zhou, Jianxin, 1995. "Transfer continuities, generalizations of the Weierstrass and maximum theorems: A full characterization," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 281-303.
    16. Nessah, Rabia & Tazdaı¨t, Tarik, 2013. "Absolute optimal solution for a compact and convex game," European Journal of Operational Research, Elsevier, vol. 224(2), pages 353-361.
    17. Kukushkin, Nikolai S., 2008. "Maximizing an interval order on compact subsets of its domain," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 195-206, September.
    18. Kukushkin, Nikolai S., 2018. "Better response dynamics and Nash equilibrium in discontinuous games," Journal of Mathematical Economics, Elsevier, vol. 74(C), pages 68-78.
    19. Salonen, Hannu & Vartiainen, Hannu, 2010. "On the existence of undominated elements of acyclic relations," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 217-221, November.
    20. Quartieri, Federico, 2022. "A unified view of the existence of maximals," Journal of Mathematical Economics, Elsevier, vol. 99(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:29:y:1998:i:3:p:285-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.