IDEAS home Printed from https://ideas.repec.org/p/ivi/wpasad/1996-08.html
   My bibliography  Save this paper

Numerical representation for lower quasi-continuous preferences

Author

Listed:
  • Josep Enric Peris Ferrando

    (Universidad de Alicante)

  • Begoña Subiza Martínez

    (Universidad de Alicante)

Abstract

A weaker than usual continuity condition for acyclic preferences is introduced. For preorders this condition turns out to be equivalent to lower continuity, but in general this is not true. By using this condition, a numerical representation which is upper semicontinuous is obtained. This fact guarantees the existence of maxima of such a function, and therefore the existence of maximal elements of the binary relation.

Suggested Citation

  • Josep Enric Peris Ferrando & Begoña Subiza Martínez, 1996. "Numerical representation for lower quasi-continuous preferences," Working Papers. Serie AD 1996-08, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  • Handle: RePEc:ivi:wpasad:1996-08
    as

    Download full text from publisher

    File URL: http://www.ivie.es/downloads/docs/wpasad/wpasad-1996-08.pdf
    File Function: Fisrt version / Primera version, 1996
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tian, Guoqiang & Zhou, Jianxin, 1995. "Transfer continuities, generalizations of the Weierstrass and maximum theorems: A full characterization," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 281-303.
    2. Peleg, Bezalel, 1970. "Utility Functions for Partially Ordered Topological Spaces," Econometrica, Econometric Society, vol. 38(1), pages 93-96, January.
    3. Campbell, Donald E. & Walker, Mark, 1990. "Maximal elements of weakly continuous relations," Journal of Economic Theory, Elsevier, vol. 50(2), pages 459-464, April.
    4. Trout Rader, 1963. "The Existence of a Utility Function to Represent Preferences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 30(3), pages 229-232.
    5. Bergstrom, Theodore C., 1975. "Maximal elements of acyclic relations on compact sets," Journal of Economic Theory, Elsevier, vol. 10(3), pages 403-404, June.
    6. Peris, Josep E. & Subiza, Begona, 1995. "A weak utility function for acyclic preferences," Economics Letters, Elsevier, vol. 48(1), pages 21-24, April.
    7. Walker, Mark, 1977. "On the existence of maximal elements," Journal of Economic Theory, Elsevier, vol. 16(2), pages 470-474, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Athanasios Andrikopoulos, 2016. "A characterization of the generalized optimal choice set through the optimization of generalized weak utilities," Theory and Decision, Springer, vol. 80(4), pages 611-621, April.
    2. Bosi, Gianni & Zuanon, Magalì, 2014. "Upper semicontinuous representations of interval orders," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 60-63.
    3. Gorno, Leandro & Rivello, Alessandro T., 2023. "A maximum theorem for incomplete preferences," Journal of Mathematical Economics, Elsevier, vol. 106(C).
    4. Rodriguez-Palmero, Carlos, 1997. "A representation of acyclic preferences," Economics Letters, Elsevier, vol. 54(2), pages 143-146, February.
    5. Rodriguez-Palmero, Carlos & Garcia-Lapresta, Jose-Luis, 2002. "Maximal elements for irreflexive binary relations on compact sets," Mathematical Social Sciences, Elsevier, vol. 43(1), pages 55-60, January.
    6. Quartieri, Federico, 2022. "A unified view of the existence of maximals," Journal of Mathematical Economics, Elsevier, vol. 99(C).
    7. Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
    8. Quartieri, Federico, 2021. "Existence of maximals via right traces," MPRA Paper 107189, University Library of Munich, Germany.
    9. Andrikopoulos, Athanasios & Zacharias, Eleftherios, 2008. "General solutions for choice sets: The Generalized Optimal-Choice Axiom set," MPRA Paper 11645, University Library of Munich, Germany.
    10. Alcantud, J. C. R. & Rodriguez-Palmero, C., 1999. "Characterization of the existence of semicontinuous weak utilities," Journal of Mathematical Economics, Elsevier, vol. 32(4), pages 503-509, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salonen, Hannu & Vartiainen, Hannu, 2010. "On the existence of undominated elements of acyclic relations," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 217-221, November.
    2. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.
    3. Duggan, John, 2011. "General conditions for the existence of maximal elements via the uncovered set," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 755-759.
    4. Quartieri, Federico, 2021. "Existence of maximals via right traces," MPRA Paper 107189, University Library of Munich, Germany.
    5. Gianni Bosi & Magalì E. Zuanon, 2017. "Maximal elements of quasi upper semicontinuous preorders on compact spaces," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 109-117, April.
    6. Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
    7. Kukushkin, Nikolai S., 2008. "Maximizing an interval order on compact subsets of its domain," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 195-206, September.
    8. John Duggan, 2011. "General Conditions for Existence of Maximal Elements via the Uncovered Set," RCER Working Papers 563, University of Rochester - Center for Economic Research (RCER).
    9. J.C.R. Alcantud, 1999. "Weak utilities from acyclicity," Theory and Decision, Springer, vol. 47(2), pages 185-196, October.
    10. Athanasios Andrikopoulos, 2016. "A characterization of the generalized optimal choice set through the optimization of generalized weak utilities," Theory and Decision, Springer, vol. 80(4), pages 611-621, April.
    11. Quartieri, Federico, 2022. "A unified view of the existence of maximals," Journal of Mathematical Economics, Elsevier, vol. 99(C).
    12. Kukushkin, Nikolai S., 2006. "On the choice of most-preferred alternatives," MPRA Paper 803, University Library of Munich, Germany.
    13. Rodriguez-Palmero, Carlos & Garcia-Lapresta, Jose-Luis, 2002. "Maximal elements for irreflexive binary relations on compact sets," Mathematical Social Sciences, Elsevier, vol. 43(1), pages 55-60, January.
    14. Morgan, Jacqueline & Scalzo, Vincenzo, 2007. "Pseudocontinuous functions and existence of Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 174-183, February.
    15. M. Carmen Sánchez & Juan-Vicente Llinares & Begoña Subiza, 2003. "A KKM-result and an application for binary and non-binary choice functions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(1), pages 185-193, January.
    16. Alcantud, J.C.R., 2008. "Mixed choice structures, with applications to binary and non-binary optimization," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 242-250, February.
    17. Nosratabadi, Hassan, 2014. "Partially upper continuous preferences: Representation and maximal elements," Economics Letters, Elsevier, vol. 125(3), pages 408-410.
    18. Hougaard, Jens Leth & Tvede, Mich, 2002. "Benchmark selection: An axiomatic approach," European Journal of Operational Research, Elsevier, vol. 137(1), pages 218-228, February.
    19. Federico Quartieri, 2022. "On the Existence of Greatest Elements and Maximizers," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 375-389, November.
    20. Carlos Alós-Ferrer & Klaus Ritzberger, 2015. "On the characterization of preference continuity by chains of sets," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(2), pages 115-128, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ivi:wpasad:1996-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Departamento de Edición (email available below). General contact details of provider: https://edirc.repec.org/data/ievages.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.